Swift J2058.4+0516: DISCOVERY OF A POSSIBLE SECOND RELATIVISTIC TIDAL DISRUPTION FLARE

S. Bradley Cenko¹, Hans A. Krimm^{2,3}, Assaf Horesh⁴, Arne Rau⁵, Dale A. Frail⁶, Jamie A. Kennea⁷, Andrew J. Levan⁸, Stephen T. Holland^{2,3}, Nathaniel R. Butler^{1,9}, Robert M. Quimby⁴, Joshua S. Bloom¹, Alexei V. Filippenko¹, Avishay Gal-Yam¹⁰, Jochen Greiner⁵, S. R. Kulkarni⁴, Eran O. Ofek⁴, Felipe Olivares E.⁵, Patricia Schady⁵, Jeffrey M. Silverman¹, Nial R. Tanvir¹¹, and Dong Xu¹⁰

Draft version July 28, 2011

ABSTRACT

We report the discovery by the *Swift* hard X-ray monitor of the transient source *Swift* J2058.4+0516 (Sw J2058+05). Our multi-wavelength follow-up campaign uncovered a long-lived (duration \gtrsim months), luminous X-ray ($L_{X,iso} \approx 3 \times 10^{47} \, \mathrm{erg \, s^{-1}}$) and radio ($\nu L_{\nu,iso} \approx 10^{42} \, \mathrm{erg \, s^{-1}}$) counterpart. The associated optical emission, however, from which we measure a redshift of 1.1853, is relatively faint, and this is not due to a large amount of dust extinction in the host galaxy. Based on numerous similarities with the recently discovered GRB 110328A / *Swift* J164449.3+573451 (Sw J1644+57), we suggest that Sw J2058+05 may be the second member of a new class of relativistic outbursts resulting from the tidal disruption of a star by a supermassive black hole. If so, the relative rarity of these sources implies that either these outflows are extremely narrowly collimated ($\theta < 1^{\circ}$), or only a small fraction of tidal disruptions generate relativistic ejecta. Analogous to the case of long-duration gamma-ray bursts and core-collapse supernovae, we speculate that the spin of the black hole may be a necessary condition to generate the relativistic component. Alternatively, if powered by gas accretion (i.e., an active galactic nucleus), this would imply that some galaxies can transition from apparent quiescence to a radiatively efficient state of accretion on quite short time scales.

Subject headings: X-rays: bursts — accretion — galaxies: nuclei — black hole physics — X-rays: individual (Sw J1644+57)