Design and tests of the hard X-ray polarimeter X-Calibur

M. Beilicke^a, M.G. Baring^b, S. Barthelmy^c, W.R. Binns^a, J. Buckley^a, R. Cowsik^a, P. Dowkontt^a, A. Garson^a, Q. Guo^a, Y. Haba^d, M.H. Israel^a, H. Kunieda^d, K. Lee^a, H. Matsumoto^d, T. Miyazawa^d, T. Okajima^c, J. Schnittman^c, K. Tamura^d, J. Tueller^c, and H. Krawczynski^a

^aDepartment of Physics and McDonnell Center for the Space Sciences, Washington University, St. Louis, MO, USA; ^bRice University, TX, USA; ^cGoddard Space Flight Center, MD, USA; ^dNagoya University, Japan;

ABSTRACT

X-ray polarimetry promises to give qualitatively new information about high-energy astrophysical sources, such as binary black hole systems, micro-quasars, active galactic nuclei, and gamma-ray bursts. We designed, built and tested a hard X-ray polarimeter X-Calibur to be used in the focal plane of the InFOC μ S grazing incidence hard X-ray telescope. X-Calibur combines a low-Z Compton scatterer with a CZT detector assembly to measure the polarization of $10-80\,\text{keV}$ X-rays making use of the fact that polarized photons Compton scatter preferentially perpendicular to the electric field orientation. X-Calibur achieves a high detection efficiency of order unity.

Keywords: X-rays, polarization, black hole, InFOCuS, X-Calibur