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ABSTRACT - Aquarius is an L-band radiometer and scatterometer instrument 

combination designed to map the salinity field at the surface of the ocean from space. The 

instrument is designed to provide global salinity maps on a monthly basis with a spatial 

resolution of 150 km and an accuracy of 0.2 psu.  The science objective is to monitor the 

seasonal and interannual variation of the large scale features of the surface salinity field 

in the open ocean.  This data will promote understanding of ocean circulation and its role 

in the global water cycle and climate.   Aquarius is the primary instrument on the 

Aquarius/SAC-D mission, a partnership between the USA (NASA) and Argentina 

(CONAE).  Launch is scheduled for May, 2010.   

 

I.  INTRODUCTION 
 
Aquarius is a combined active/passive L-band microwave instrument designed to map the 

surface salinity field of the oceans from space.  It will be flown on the Aquarius/SAC-D 

mission, a partnership between the USA space agency (NASA) and Argentine space 

agency (CONAE).  The mission is composed of two parts:  (a) Aquarius, a 

radiometer/scatterometer instrument combination for measuring sea surface salinity, 

which is being developed as part of NASA’s Earth System Science Pathfinder (ESSP) 

program; and (b) SAC-D, which is the fourth spacecraft service platform in the CONAE 

Satelite de Aplicaciones Cientificas (SAC) program and will include several additional 

instruments.  The primary focus of the mission is to monitor the seasonal and interannual 

variations of the salinity field in the open ocean.  The mission also meets the needs of the 



Argentine space program for monitoring the environment and for hazard detection.  The 

objective of this paper is to give an overview of the mission with emphasis on Aquarius 

and the issues associated with monitoring salinity from space.  The manuscript divides 

into two parts:  Sections II-IV which provide background on the science objectives of 

Aquarius and the physics of remote sensing of ocean salinity; and Sections V-VI which 

describe the Aquarius/SAC-D mission and give an overview of the Aquarius instrument.  

 

II.  SCIENCE OBJECTIVES 

 

The goal of Aquarius is to monitor the seasonal and interannual variation of the large 

scale features of the sea surface salinity (SSS) field in the open ocean.  The 

instrumentation has been designed to provide monthly maps with a spatial resolution of 

150 km and an accuracy of 0.2 psu.  These are requirements derived from the need to 

better understand the buoyancy driven thermohaline circulation of the ocean and its 

relationship to climate and the global water cycle.   

The thermohaline circulation moves large masses of water and heat around the globe.  On 

the large scale, cold and dense water sinks in high latitudes and ventilates the ocean 

interior.  An example of the surface limb of this circulation is the relatively warm salty 

waters of the Gulf Stream which transports heat to the northern latitudes and moderates 

the climate of Europe.  Pre-historic climate events have been linked to the strength of the 

thermohaline circulation, which is particularly dependent on surface salinity variations in 

the subpolar North Atlantic [Broecker, 1991]. Of the two variables that determine 

buoyancy (salinity and temperature), temperature is already being monitored from space 

[e.g. Gentemann et al, 2004].  The surface salinity field is the missing variable needed to 

understand this circulation.   

An example of the importance of salinity is the “great salinity anomaly” of the 1970’s in 

which a large water mass of relatively fresh water circulated around the North Atlantic 

subpolar gyre and apparently modified the inflow of warm water from the Gulf Stream 

leading to a period of cool temperature in northern Europe [Dickson et al, 1988].  

Increased freshening in the form of freshwater flux from melted ice is expected in the 
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future [Bindoff et al, 2007] and knowledge of the dynamics of the SSS field in the north 

Atlantic will help better understand the potential impact of such melting on ocean 

circulation and climate change in this region.   

Salinity also plays an important role in energy exchange between the ocean and 

atmosphere in other ways.  For example, in areas of strong precipitation, fresh water 

“lenses” can form on the surface [Sprintall and Tomzcak, 1992].  These are buoyant 

layers of water that form stable layers and insulate the water in the mixed layer below 

from the atmosphere [Lukas and Lindstrom, 1991].  This alters the air-sea coupling 

(energy exchange) and can affect the evolution of tropical intra-seasonal oscillations, 

monsoons and the El Nino-Southern Oscillation (ENSO).   

 

Salinity is also an indicator for tracking the global water cycle.  Water fluxes between the 

ocean and atmosphere dominate the global hydrologic cycle, accounting for 86% of 

global evaporation and 78% of global precipitation [Schmitt, 1994].  Changes in surface 

salinity reflect changes in surface freshwater forcing.  Systematic mapping of the global 

salinity field will help to reduce the wide uncertainties in the marine freshwater budget 

[Johnson et al, 2002] and will help to better understand the global water cycle and how it 

is changing. 

 

The need for measurements of salinity on a global scale has recently been articulated in 

the U.S. Climate Variability Program (CLIVAR) science planning (Oceanography 

Magazine, 2008;  Lagerloef, et al, 2008).  The time and spatial scale of observations 

needed to improve understanding of processes in the open ocean are relatively long 

(months and hundreds of kilometers, respectively) but the associated salinity changes are 

relatively small (tenths of a psu) [Lukas and Santiago-Mundujano, 2008].  This is in 

contrast to processes in the coastal ocean where changes can be several psu but time and 

spatial scales are on the order of days and kilometers.  New technology, perhaps aperture 

synthesis [Le Vine et al, 1999;  Font et al, 2009], is needed to achieve the high spatial 

resolution at low microwave frequencies (L-band) needed to address the coastal ocean.   
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Aquarius is designed to focus on the open ocean.  The goal for the Aquarius instrument is 

to provide global maps of the sea surface salinity field in the open ocean on a monthly 

basis with an average accuracy of 0.2 psu and at a spatial resolution of 150 km. In 

comparison, the existing database is too sparse in both time and space to resolve key 

processes.  For example, dividing the ice-free ocean into one-degree squares in latitude 

and longitude, one finds that about 25% has never been sampled and more than 73% has 

fewer than 10 samples [Koblinsky et al, 2003;  Lagerloef et al, 1995].  The sparse data is 

primarily a reflection of the limitations of in situ sampling and is worse in the southern 

oceans than in the north.  In contrast, Aquarius will completely map the global ice-free 

ocean every 7-days from which monthly average composites will be derived.  This will 

provide a snapshot of the mean field, as well as resolving the seasonal to interannual 

variations over the three-year baseline of the mission. 

 

III.  Measurement Physics 

 

A.  Introduction 

Salinity changes the microwave emissivity of ocean water causing a change of about 

0.5K/psu at L-band.  This is well within the capability of modern microwave radiometers 

to measure [Blume et al, 1978; Le Vine et al, 1998].  The radiometric sensitivity to 

changes in salinity is a strong function of frequency and decreases rapidly above about 1 

GHz.  The radio astronomy window at 1.413 GHz (L-band) provides a quiet piece of 

spectrum with adequate bandwidth, and most research on remote sensing of salinity has 

been done there.  But at low microwave frequencies antenna size becomes a 

technological challenge and is the factor limiting spatial resolution from space.  

Radiometric accuracy is also an important issue because the accuracy required for ocean 

processes important for climate studies, 0.2 psu, is small in radiometric units (about 0.1 

K).  While this can be achieved with good design, competing factors such as Faraday 

rotation and surface roughness must also be taken into account when making 

measurements from space at L-band.  In the sections below a brief background is 

presented of the physics behind the measurement of salinity and of the issues associated 

with monitoring salinity from space. 
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B.  Microwave Radiometry 

The configuration for microwave remote sensing of the oceans is illustrated in Figure 1.  

At microwave frequencies, the thermal radiation emitted by an ideal “blackbody” is given 

to good approximation by the Rayleigh-Jean law: 

 

B(f)     =      2 k Tphys / λ2     W / m2-Sr-Hz     (1) 

 

where k is Boltzmann’s constant, Tphys is the physical temperature of the object, λ = c/f is 

the wavelength and f is frequency.  Equation 1 is the total power per unit area emitted per 

unit bandwidth (i.e. per hertz) in unit solid angle (i.e. per steradian).  It is called the 

“brightness” although “spectral brightness” is also used and in optics B(f) is called 

“radiance” [Ulaby et al, Section 4.2-1].  In the case of real objects, such as the ocean 

surface, it is conventional to use Equation 1 with Tphys replaced by an effective 

temperature, TB (Ω, f), called the “brightness temperature” and to write: 

 

B(f)     =      2 k TB / λ2     W/m2-sr-Hz     (2a) 

 

where 

 TB (f) = e(f) Tphys        (2b) 

 

The term e(f) is called the “emissivity”.  In the case of the ocean surface, the emissivity 

depends on salinity but it also depends on the physical temperature and surface roughness 

(waves) as well as other parameters such as incidence angle, frequency and polarization.     

 

The radiation emitted by the surface is measured with a “microwave radiometer” as 

illustrated in Figure 1.  The radiation is collected by the antenna and amplified in the 

receiver.  Assuming ideal functions for each (i.e. ignoring losses and engineering details 

of implementation) and assuming a receiver with unit gain over its bandwidth, one 

obtains the following expression for the output power at polarization p [Kraus, 1966;  

Ulaby, Moore and Fung, 1981, Section 4-2.1]: 
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 Wp = (1/2) Ae ∫∫ B(Ω, f) Pnp(Ω) d Ω d f      (3) 

 

where Ae is the effective area of the antenna, Pnp is the normalized antenna pattern for 

polarization, and the subscript “p” indicates polarization (e.g. horizontal or vertical).  It is 

conventional in microwave radiometry to express Equation 3 in terms of effective 

temperatures.  This is done by replacing the left-hand side by the change in temperature 

this power would cause in a matched resistor at the output:   

 

 Wp =  kTAp Bw       (4) 

 

TAp is called the “antenna temperature” and Bw is the bandwidth of the measurement 

system.  Using Equations 2 and 4 in Equation 3, and assuming that TB and Pn are 

independent of frequency over the passband of the measurement system and that the 

bandwidth, Bw, is narrow compared to the center frequency, one obtains:   

 

    TAp = (1/ ΩB ) ∫∫ TB(Ω) Pnp(Ω) dΩ      (5) 

  = (1/4π) ∫∫ e(Ω) Tphys Gnp(Ω) dΩ     (6) 

 

where the relationship Ae = λ2 /ΩB  has been used in Equation 5 to obtain an expression in 

terms of the antenna solid angle, ΩB.  Equation 5 is a classic result in microwave 

radiometry relating the observable, the antenna temperature, TAp, to the source brightness 

temperature TB(Ω) [e.g. Ulaby et al, 1981, section 4-5.3].  Equation 6 is a variation in 

which the relationship Gnp = 4π (Pnp/ΩB) has been used to obtain an expression in terms 

of antenna gain, G, and Equation 2b has been used to illustrate the dependence on 

emissivity.   

 

C.  Example:  Remote Sensing of Salinity 
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The dependence of the thermal emission from the ocean on salinity is contained in the 

emissivity,  e(f).  The emissivity is a complex quantity that depends on physical and 

chemical properties of the water (e.g. salinity and temperature) and also geometry of the 

surface (e.g. waves).  The characterization is greatly simplified if one ignores waves (flat 

ocean surface).  For example, consider a planar boundary between a uniform upper half-

space (air) and a uniform lower half-space (water).  Assuming a system in equilibrium, 

conservation of energy can be used to relate the emissivity to reflectivity [Peake, 1959]:   

 

 e(θ) = 1 - R(θ)      (7) 

 

Because the media above and below is homogenous, the reflectivity, R(θ), can be 

expressed in term of the Fresnel reflection coefficient for a flat surface R(θ) = |r(θ)|2.  For 

a plane surface, one obtains [Plonsey and Collin. 1961]: 

 

                                       √{ε – sin2(θ)}  -  ε cos(θ) 
      ---------------------------   Vertical Polarization  (8a) 
                                       √{ε – sin2(θ)} +  ε cos(θ) 

 r(θ) =  

     √{ε – sin2(θ)}    -   cos(θ) 
   – ------------------------------       Horizontal Polarization (8b) 
                                      √ {ε – sin2(θ)}   +  cos(θ) 
 

In the expression above, ε is the relative dielectric constant of the lower half-space and θ 

is the angle the boresight direction of the antenna makes with the normal to the surface 

(there is no dependence on azimuth, φ in this case).  In the special case of normal 

incidence (θ = 0), the distinction between polarizations disappears and one has: 

 

e(0) = 4 Re(√ε) / │(1 + √ε) │2     (9) 

 

The dielectric constant of sea water at microwave frequencies gained considerable 

attention in the last quarter of the 20th century both because of the interest in remote 

sensing of salinity [e.g. Klein and Swift, 1977;  McIntosh and Swift, 1983] and because it 

is also important in microwave remote sensing of sea surface temperature [Stogryn, 1971;  
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Meissner and Wentz, 2004;   Ellison et al, 1998].  The expression used most often at L-

band for remote sensing of salinity is that proposed by Klein and Swift [1977].  Although 

successful, this model is based on a relatively limited set of measurements at 1.4 GHz 

and the need for an accurate model function at L-band for use by SMOS and Aquarius led 

to a new wave of measurements [Blanch and Aguasca, 2004;  Lang et al, 2008].  The 

early work used a Debye model for the contribution of the water molecule to provide an 

expression valid over a range of frequency [e.g. Stogryn, 1995;  Klein and Swift, 1977].  

However, the recent investigations [Blanch and Agusca, 2004;  Lang et al, 2008] have 

focused on measurements at a single frequency (1.4l3 GHz) over a range of salinity and 

temperature.  This work is still in progress [Lang et al, 2009].   

 

Figure 2 is an example of the effect of salinity on emission from sea water at L-band.  

Brightness temperature, TB , is plotted on the ordinate and the physical temperature of the 

water (SST) has been plotted along the abscissa for different values of salinity.  The 

computations were made using the Klein and Swift [1977] expression for the dielectric 

constant of sea water.  The shaded area in Figure 2 indicates the range of salinity typical 

of the open ocean (e.g. away from the coast) and gives an idea of the dynamic range to be 

expected of the radiometric signal.   

 

The sensitivity of the measurement to changes in salinity (i.e. the ratio of the change in 

TB due to a change in salinity) corresponds roughly to the spacing between the level 

curves of constant salinity.  It is clear from Figure 2 that the sensitivity decreases in cold 

water.  The sensitivity is also a function of frequency and incidence angle.  This is 

illustrated in Figure 3 in the case Tphys = 200C and SSS = 35 psu.  The dashed curve is for 

nadir (θ = 0) and the solid curves indicate the sensitivity at 40 degrees.  Notice that when 

θ ≠ 0, vertical polarization (upper curve) is more sensitive than horizontal polarization 

(lower curve).  In general, the sensitivity at 1.413 GHz is in the range of 0.4 – 0.6 K/psu 

depending on polarization and incidence angle.  Only the magnitude of the sensitivity has 

been plotted in Figure 3.  The sign is negative (decreasing TB for an increase in salinity).  

Also note that the sensitivity peaks around 600 MHz.  Proposals have been made for 

remote sensing from space at frequencies closer to the peak than the L-band window 
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[McIntosh and Swift, 1983].  However, the limited bandwidth available at other windows 

and the prevalence of manmade noise make this impractical.   

 

In its simplest form, the remote sensing problem consists of a measurement of the 

brightness temperature (for an ideal antenna TA = TB ) together with an independent 

measure of SST.  The intersection of the two values on a graph such as shown in Figure 2 

gives SSS.  The accuracy is determined by the error in estimating TB from the measured 

TA and the error in SST.  Of course, the accuracy of the level curves is also a factor; 

hence, the continuing interest in measurements of the dielectric constant at 1.413 GHz.  

There are also other issues that complicate the remote sensing problem in the real world 

of monitoring salinity from space.  These are discussed in Section IV. 

 

D.  Remote Sensing Heritage 
 
The measurement of sea surface salinity remotely with a microwave radiometer has been 

demonstrated in experiments that date back to the 1970’s.  For example, Droppelman et 

al, [1970] reported observing salinity variations in outflow of the Mississippi River with 

an airborne radiometer, and Lerner and Hollinger [1977] reported differences associated 

with salinity in the response of the L-band radiometer that flew on SkyLab.  In the late 

1970’s an extensive series of measurements was conducted at NASA’s Langley Research 

Center that demonstrated the feasibility of monitoring salinity with airborne radiometers.  

The approach was to use two frequencies (L-band and S-band) to eliminate the need for 

an independent measure of surface temperature [Blume et al, 1978; 1981; Blume and 

Kendal, 1982].  However, the narrow bandwidth available for passive measurements at S-

band (2.65 GHz) and the prevalence of man-made noise (RFI) in this portion of the 

spectrum made use of S-band impractical and the latest reports were of the use of 

measurements in the window at 1.413 GHz  together with an independent measure of 

temperature [e.g. Kendal and Blanton, 1981].  Research was also conducted at the 

Langley Research Center at this time to improve the model function for the dependence 

of the dielectric constant on salinity [Klein and Swift, 1977] and a proposal was made for 

remote sensing from space [Swift and MacIntosh, 1983].   
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In the 1990’s new research was conducted at the NASA Goddard Space Flight Center, 

this time in the context of new technology, aperture synthesis, which had the potential to 

make remote sensing from space at long wavelengths practical [Le Vine, 1999].  This is 

the technology soon to be demonstrated in space by the MIRAS radiometer on ESA’s 

SMOS mission [Font et al, 2009].  Experiments in the vicinity of the Delaware River 

plume demonstrated accuracies on the order of 1 psu [Le Vine et al, 1998].  Experiments 

were also conducted further off shore to obtain conditions more representative of the 

open ocean.  Figures 4 and 5 show results from an experiment that took place in 1999  

east of Delaware Bay in the vicinity of a warm core eddy from the Gulf Stream.  The 

experiment consisted of in situ mapping using shipborne thermosalinographs and remote 

sensing from NASA’s P-3 aircraft using the ESTAR L-band radiometer [Le Vine, Swift 

and Haken, 2001].  Figure 4 (top) shows the track of the ships and the salinity map 

derived from the thermosalinographs;  and Figure 4 (bottom) shows a comparison of the 

salinity derived from ESTAR measurements and the shipborne observations.  The 

comparison is along the track with the nearest time coincidence between ship and aircraft 

(the aircraft flew over the ship along this track).  Figure 5 shows the composite SSS field 

derived from the ship observations (right) and airborne observations (left).  Some of the 

differences are attributable to the time differences required by the two sources to make 

the map:  the ship map is a composite of measurements over three days but the aircraft 

required only a few hours to map the same region.   

 

Airborne remote sensing of salinity is an on-going endeavor.  Research has been 

conducted in Europe in preparation for the SMOS mission using both conventional and 

interferometric (i.e. synthetic aperture) radiometers [Kainulainen, et al, 2007;  Berger et 

al, 2002] and research with a focus on the coastal ocean has been supported by US Navy 

[Burrage et al, 2008;  Miller, 2000].  Remote sensing from space with the spatial 

resolution needed to address issues of the coastal zone continues to be a research 

challenge.  

 
IV.  REMOTE SENSING SALINITY FROM SPACE 
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Figure 6 shows the Aquarius radiometer looking down from its orbit in space toward the 

ocean.  The goal is to measure the thermal emission from the surface (bold solid line) and 

to use this signal together with knowledge of the SST to obtain an estimate of the sea 

surface salinity (SSS). Conceptually, this is straight forward:  One measures TB and, with 

knowledge of SST, uses a look-up table or graph such as Figure 2 to find the value of 

salinity that corresponds to the intersection.  The accuracy depends on how well SST is 

known; how well the instrument response (e.g. Equation 5) can be inverted to obtain the 

brightness temperature, TB; and how well the level curves of constant salinity are known.   

Aquarius will use the best available estimates of SST (e.g. the GODAE high resolution 

sea surface temperature pilot project, Donlon et al, 2007) and best available model for the 

level curves (e.g. see Section III.C).  However, making the measurement from space in 

the real world at L-band involves additional issues.  These are illustrated in Figure 6 and 

discussed briefly below. 

 

A primary issue when measuring from space is the propagation path.  At L-band, 

scattering in the atmosphere and the dependence on clouds and water vapor are small 

[Yueh et al, 2001].  However, emission from the atmosphere must be taken into account 

in order to achieve the accuracy needed for remote sensing of salinity.  This includes both 

upwelling emission (about 1.9 K at nadir; Yueh et al, 2001) and downwelling radiation 

that is reflected from the surface (dashed lines).  The approach adopted for Aquarius is to 

use conventional radiative transport theory to model attenuation and emission from the 

atmosphere [e.g. Blume and Kendall, 1982] and to obtain the parameters such as 

temperature and pressure profiles needed in the model from measurements and 

meteorlogical models such as provided by the National Center for Environmental 

Prediction (NCEP).  The emission at L-band is weakly dependent on atmospheric 

conditions [Yeuh et al, 2001] and modern models exist to predict its value [Liebe, 

Rosenkranz and Hufford, 1992;  Thompson, Moran and Swenson, 1986];  however direct 

measurements of the emission from the atmosphere at the accuracy needed for remote 

sensing of salinity haven’t been made at L-band.  As a result some uncertainty exists that 

will have to be determined once the sensor is in orbit.   
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Liquid water in the form of rain can also be important at L-band at the accuracy required 

for monitoring of salinity.  In the case of Aquarius, areas where rain is likely will be 

flagged using weather models and other satellite data.  In addition, the Aquarius/SAC-D 

observatory will include a Microwave Radiometer (MWR) operating at 23.8 and 36.5 

GHz (see Section V).  The MWR will have a rain product with a foot print that is 

designed to cover the field-of-view of Aquarius (Figure 7).   

 

In the case of a sensor in space, the propagation path also includes the ionosphere.  

Attenuation and emission in the ionosphere are not important at L-band [Le Vine and 

Abraham, 2002]; however, the Earth’s magnetic field makes the ionosphere birefringent 

causing the polarization of electromagnetic waves propagating through the ionosphere to 

rotate (Faraday rotation).  This is an issue because the emissivity of the surface depends 

on polarization (e.g. Equation 8).  The orbit planned for Aquarius (sun-synchronous with 

ascending equatorial crossings at 6 pm) avoids the mid-day maximum electron density of 

the ionosphere, but the potential remains for enough rotation of the polarization vector to 

warrant correction [Le Vine and Abraham, 2002].  Also, Aquarius is scheduled to operate 

during a peak in the solar cycle which corresponds to increased ionization.  Models of the 

ionosphere, especially over the ocean where data is limited, are improving but are not 

sufficiently accurate to meet the Aquarius goal of 0.2 psu.  To address this problem, the 

Aquarius radiometer will measure the third Stokes parameter (correlation between 

vertical and horizontal polarization) in addition to radiation at vertical and horizontal 

polarization.  The ratio of the third Stokes parameter to the difference between vertical 

and horizontal polarization can be used to retrieve the rotation angle.  Although the 

theory is well known [Yueh, 2000], there are issues associated with implementing it with 

real antennas [Le Vine et al, 2007] and this approach must be tested in space.   

 

Another issue associated with remote sensing at L-band in the real world is the presence 

of unwanted radiation.  Emission from the atmosphere is an example.  At L-band there 

are several other sources that can be important for remote sensing of salinity.  One of 

these is radiation from outer space.  The window at 1.413 GHz was restricted to passive 

use because it is centered on an emission line of hydrogen and was needed for radio 
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astronomy studies of the distribution of hydrogen in our galaxy.  In addition to hydrogen, 

radiation from sources with a broad spectrum (e.g. thermal sources) and also the cosmic 

background radiation are important at L-band.  The dominant mode of interference is 

radiation that is reflected from the surface into the main antenna beam (dot-dash line in 

Figure 6).  The total contribution can be more than 12 K in the direction of the plane of 

the galaxy even when smoothed by the aperture of large antennas like Aquarius (Le Vine 

and Abraham, 2006).  Fortunately, modern surveys have been made by the radio 

astronomy community of these sources and a model for the L-band “sky” exists that can 

be used to characterize the contribution of these sources (Le Vine and Abraham, 2004;   

Wolleben et al, 2006).  An open issue that will most likely not be resolved until after 

launch is the impact of surface roughness on this signal [Dinnat and Le Vine, 2008; Reul 

et al, 2007]. 

  

The Sun and Moon are also sources of radiation at L-band.  In the microwave range, the 

sun is a very hot thermal source with effective temperatures on the order of 106 degrees 

during active periods of the solar cycle [Le Vine et al, 2005;  Ruel et al, 2007].  Solar 

flares can be even hotter.  Even though the sun is relatively small in angular extent, it is 

such a strong and variable radiator at L-band that radiation from the sun constitutes one 

of the most important potential sources of error [Le Vine, et al, 2005].  The 

Aquarius/SAC-D spacecraft observatory will be in a nearly polar, sun-synchronous orbit 

which exposes it to both direct radiation from the sun and also radiation reflected from 

the ocean surface into the radiometer.  Several steps have been taken in the design and 

orientation of Aquarius to minimize the impact radiation from the Sun.  The orbit of the 

Aquarius/SAC-D spacecraft lies close to the day-night terminator (equatorial crossings at 

6 am and 6 pm) and to minimize the impact of reflected solar radiation, the antenna 

boresights are directed across track toward the night-time side of the ground track (i.e. 

away from the sun as illustrated in Figure 7).  Direct and reflected radiation from the Sun 

can not be avoided, but in this configuration they reach the radiometer in the far sidelobes 

of the antenna.  In addition, special attention has been given in the design of the Aquarius 

antennas to minimize the sidelobes in the direction of both the direct ray and the reflected 

ray.  Surface roughness complicates the problem, and at certain times of the year it is 
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possible for scattered radiation from the sun to enter near the main lobe [Dinnat and Le 

Vine, 2008].  These situations are predictable and will be flagged for examination.   

 

Radiation from the moon at L-band is primarily due to its own thermal emission and is 

usually negligible.  However, during short periods that occur twice in each lunar cycle, 

this radiation will reflect directly into the main beam of the antenna causing changes in 

antenna temperature as much as 1 K [Dinnat et al, 2009].  These events are relatively 

short (1% of observations) and can be predicted accurately.  The plan for Aquarius is to 

flag these time intervals for analysis later.   

 

Another factor that complicates remote sensing of salinity from space is the presence of 

land in the field of view.  At L-band, land is radiometrically much warmer than ocean (on 

the order of 300 K for land compared to 100 K for ocean).  Given an accuracy goal of 

about 0.1 K (roughly 0.2 psu), even small amounts of land within the foot print can bias 

the retrieval of salinity.  As a result, the required accuracy will be achieved only in the 

open ocean several beam footprints away from land, and the science applications are 

focused on issues of this regime (e.g. large scale circulation of the global ocean).  Salinity 

will be estimated close to shore but with reduced accuracy.  How close to shore the 

values will be useful and how well corrections can be made for land are important areas 

of research for Aquarius data. 

 

An important issue in the real world is surface roughness (waves).  Compared to a flat 

surface, roughness causes an increase in brightness temperature.  The sensitivity to wave 

roughness (rate of change in brightness temperature as a function of windspeed) is larger 

for horizontal polarization than vertical polarization and depends on incidence angle 

[Lerner and Hollinger, 1977; Camps et al, 2004].  The magnitude of the effect can be 

comparable to the salinity signal itself.  This is presently the most difficult source of error 

to correct because of the difficulty of characterizing the wave roughened surface.  To 

address this issue, Aquarius includes a scatterometer (radar) that will simultaneously 

measure the backscatter from the surface at L-band.  The scatterometer (1.26 GHz) and 

the radiometer (1.413 GHz) share the same antenna feeds and the antennas have been 
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designed so that the two instruments look at the same pixel with approximately the same 

3 db footprint.  The instrument timing is designed so that the observations are nearly 

simultaneous.  In  0.72 seconds the radar will have completed 4 measurement cycles of 

180 ms, and the radiometers will have completed 6 cycles of 120 ms (a cycle includes all 

measurement states and calibration).  The algorithm that relates the scatterometer 

backscatter to the change in radiometric brightness temperature is a research issue.  

Aircraft experiments are being conducted to develop a baseline algorithm [Wilson et al, 

2003] but this will have to be refined once data from space over representative sea states 

is obtained.  Because of the likely need to refine the algorithm based on the 

scatterometer, Aquarius will also employ an algorithm using roughness estimates based 

on surface winds obtained from satellite measurements and weather models together with 

theory and experiments relating wind/waves to changes in brightness temperature at L-

band [Dinnat, Le Vine and Abraham, 2008; Yueh et al, 2004; Camps et al, 2004] . 

 

A final issue in the real world is one that shouldn’t exist:  Interference due to man made 

signals (Radio Frequency Interference, RFI).  Technically, the window at L-band is 

restricted (no emission), but there are many unintentional sources of contamination.  

Computers, digital measuring equipment, air traffic control and other radars, etc.   The 

list gets longer as the spectrum on either side of the L-band window gets more and more 

crowded.  The strategy adopted by the Aquarius radiometer is to sample as rapidly as 

possible.  The radiometer will acquire one sample of 9 ms duration every 10 ms.  These 

samples will then be tested for RFI using a threshold algorithm (Misra and Ruf, 2008).  

Samples contaminated with RFI will be removed before the final average is computed.  

The data will be divided into 1.44 second blocks and the average value computed for 

each block.  This average will be used in subsequent processing.  The 1.44 second 

average will be available to the user in the data record together with an indication of how 

many samples were identified as RFI and removed.  The original unprocessed data will 

be kept in the archive.    

 

V.  AQUARIUS/SAC-D MISSION 
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Aquarius is an instrument on the Aquarius/SAC-D mission, a partnership between the 

National Aeronautics Space Agency (NASA) of the USA and its Argentine counterpart, 

Comision Nacional de Actividades Espaciales (CONAE).  The Aquarius instrument and 

the launch vehicle are being provided by NASA; the SAC-D spacecraft service platform, 

several science instruments and mission operations are being provided by CONAE.  

Table I is a list of the instruments on the observatory.  The instruments provided by 

CONAE include two cameras, the New InfraRed Scanner Technology (NIRST) camera 

developed jointly with the Canadian Space Agency to detect high temperature events 

such as forest fires and volcanoes, and a High Sensitivity Optical Camera (HSC) [Sen et 

al, 2006].  The NIRST has a swath width of 182 km at the Aquarius altitude which can be 

scanned over +/- 532 km.  This overlaps the innermost Aquarius beam and the NIRST 

may provide simultaneous SST data in priority areas for comparison with the baseline 

sources (e.g. GHRSST or NCEP).  CONAE is also developing a microwave radiometer 

(MWR) with the objective of measuring rain, ocean surface wind (speed and direction) 

and sea-ice. The MWR consists of separate radiometers at 23.8 and 36.5 GHz.  Each 

radiometer operates in pushbroom mode with eight beams (i.e. a single reflector with 

eight feed horns) providing a swath width of 390 km and a resolution of 50 km.  The 

system at 36.5 GHz is polarimetric (V and H polarization plus the third Stokes parameter) 

and the radiometer at 23.8 GHz measures vertical polarization only.  Each system 

employs one detector which scans the eight feeds with an estimated sensitivity of 0.5 K.  

The MWR will be oriented so as to cover the Aquarius swath as shown in Figure 7.  This 

is being done to complement as much as possible the Aquarius measurements (e.g. assist 

in the development of a rain flag).  The 36.5 GHz beams point forward of the Aquarius 

field of view and the 23.8 point aft.  The spacecraft will yaw slightly to guarantee overlap 

of the FOV of the three instruments.  The local incidence angle (i.e. at the surface) for the 

individual MWR beams is 52-58 degrees. 

 

Also included among the instruments on SAC-D is a GPS atmospheric occultation 

experiment called ROSA, which will be provided by the Italian Space Agency (ASI), and 

also an instrument called, CARMEN1, which is contributed by the French Centre 

National d’Etudes Spatiales (CNES) to measure the radiation and micro-particle 
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environment in space.  In addition, CONAE is testing a Data Collection System which 

will provide satellite collection of surface instrumentation over Argentina. 

 

Development of the Aquarius instrument is a partnership between the Goddard Space 

Flight Center (GSFC) and the Jet Propulsion Laboratory (JPL).  GSFC is responsible for 

the development of the radiometer hardware and processing of the science data, while 

JPL is responsible for development of the scatterometer, integration and testing of the 

Aquarius instrument (radiometer plus scatterometer) and has responsibility for pre-launch 

mission management.  GSFC takes over management after launch, including processing 

of the science data and instrument operations.  Once completed, the Aquarius instrument 

is shipped from JPL to Argentina for integration onto the SAC-D bus.  The complete 

observatory will be sent to Brazil for environmental testing and then to NASA’s 

Vandenberg launch facility for launch (May, 2010).  The launch and launch services are 

managed by NASA’s Kennedy Space Center.     

 

After launch, CONAE will provide the ground station and telecommunication services at 

their ground station and Mission Operations Center (MOC) in Cordoba, Argentina.  

Mission operations will be controlled at the MOC and ASI will provide additional 

downlink support for data.  Aquarius science telemetry will be separated at the MOC and 

sent to the Goddard Space Flight Center for processing.  The salinity data products will 

be generated at GSFC.  When the processing is finalized the data will be sent to the 

Physical Oceanography Distributive Active Archive Center (PO.DAAC) at JPL for 

permanent archiving.  Salinity maps and relevant ancillary data will be released to the 

public from GSFC prior to final archiving.  

 

Table II summarizes the orbit parameters and characteristics of the Aquarius instrument 

(radiometer and scatterometer).  The launch is from NASA’s Western Test Range at 

Vandenberg AFB using a Boeing Delta-II launch vehicle.  The observatory will go into a 

sun-synchronous orbit at an altitude of 657 km, an inclination of 98 degrees and 

equatorial crossing times of 6 am (descending) and 6 pm (ascending).  The orbit is a 7-

day exact repeat orbit.  The Aquarius swath (390 km) and orbit have been selected so that 
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complete global sampling is obtained during each 7-day period.   Aquarius salinity data 

will be released in swath format (Level 2), and in the form of weekly and monthly 

averaged gridded maps (Level 3).  Brightness temperatures and radar cross sections over 

all surfaces (ocean land and ice) also will be made available in swath format.  The swath 

and orbit has been selected to provide complete geographic coverage and enough data 

over the ocean in one month to reduce the rms measurement error to less than 0.2 psu on 

a 150 km grid scale.  See [Lagerloef et al, 2008] for a detailed error budget.   

 

VI. THE AQUARIUS INSTRUMENT 

 

A.  Introduction 

Aquarius has been designed to map the surface salinity field of the global ocean from 

space.  The goal is to monitor the seasonal and interannual variation of the large scale 

features of the surface salinity field in the open ocean by providing maps on a monthly 

basis with a spatial resolution of 150 km and an accuracy of 0.2 psu.  These are 

challenging requirements that have led to some unique features.  Some of these have 

already been mentioned:  a)  The addition of a co-located scatterometer to help provide a 

correction for roughness;  b)  The addition of a polarimetric channel (third Stokes 

parameter) to the radiometer to help correct for Faraday rotation;  c) The spacecraft orbit 

(sun-synchronous with a 6 pm ascending equatorial crossing) to minimize Faraday 

rotation and with the antennas looking away from the sun toward the nighttime side to 

minimize contamination by radiation from the sun;  and d) An antenna designed to limit 

side lobes in the direction of rays from the sun.  Achieving the accuracy goal (0.2 psu) 

requires averaging over one month and to do this requires a highly stable radiometer.  

The requirements imposed on the Aquarius radiometer are an absolute accuracy better 

than 0.13K maintained over 7 days.  To achieve this level of stability, considerable effort 

was given to the radiometer design [Wilson et al, 2005] and also to the thermal design of 

the instrument on the spacecraft, specifically to controlling the temperature of the 

radiometer front end electronics.  Detailed descriptions of the instrument can be found in 

[Le Vine et al, 2007b] and [Pellerano et al, 2006].  An overview of the salient features is 

presented below.    
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B.  The Antenna Structure 

Perhaps the most prominent feature of the Aquarius instrument is the antenna, a 2.5-m 

diameter, offset parabolic reflector with three feed horns.  The three beams are arranged 

to image in pushbroom fashion aligned roughly perpendicular to the spacecraft heading 

and pointing away from the sun as illustrated in Figure 7.  The three beams point at 

angles of  θ =  25.8, 33.8 and 40.3 degrees with respect to the spacecraft nadir which 

correspond to local incidence angles at the surface of  28.7, 37.8 and 45.6 degrees, 

respectively.  The resolution of the three radiometer beams (axes of the 3db ellipse) are:  

76 x 94 km for the inner beam, 84 x 120 km for the middle beam to 96 x 156 km for the 

outer beam (Table II).  Together they cover a swath of about 390 km.  The three beams 

do not point exactly across track:  the inner and outer beam point slightly forward and the 

middle beam points slightly aft (Figure 7).  The feed for each beam is shared by both the 

radiometer and scatterometer and is designed so that the two instruments have 

approximately the same 3dB footprint.  

 

Figure 8 is a drawing of the observatory showing how Aquarius will look when deployed 

in space.  The observatory flies with its long axis perpendicular to the plane of the orbit 

as shown in Figure 7.  The dish-like collar at the base of Aquarius where it joins SAC-D 

is a sun shield which is part of the thermal control for the instrument.   The entire 

structure will also be wrapped in blankets of milar for thermal insulation which is not 

shown in the drawings or the photograph.  The cylindrical structure between the 

sunshield and solar panels is the SAC-D service platform.  The instruments on the 

bottom, from left to right are the ROSA, the two cameras (NIRST and the HSC), the Data 

Collection System (DSC) and the MWR.  The MWR consists of two reflectors, one for 

each frequency, with one on each side of the SAC-D.  CARMEN-1, the GPS receivers 

and star trackers are located on the top service platform (same side as the Aquarius 

reflector).   

 

Figure 9 shows Aquarius in its stowed configuration.  On the left is a drawing illustrating 

Aquarius in its stowed configuration within the Delta-II launch vehicle and on the right is 
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a photograph of the actual hardware taken while Aquarius was being prepared for 

acoustic testing at JPL.  The Aquarius reflector is deployed in two steps.  The hinge at the 

reflector-boom junction (Figure 9; right) opens first moving the reflector away from the 

feeds.  This is followed by motion of the boom itself driven by the fold mechanism in the 

hinge at the base of the boom near the sun shield.  In its stowed configuration, the 

reflector is supported by two pair of struts, one of which can be seen in photograph in 

Figure 9 in the upper right above the feeds.  The feeds will fly uncovered to avoid 

potential problems (variable loss) associated with radome covers.     

 

An important consideration in the design of Aquarius was thermal control.  The 

requirement is for thermal control to within <0.1o C over 7 days.  This is needed for 

radiometer stability to allow averaging to reduce noise and achieve the final accuracy of 

0.2 psu.  The sun shield is for thermal control.  (A shield for RF radiation from the Sun 

was ruled out because of the large size needed to be effective.)  In addition to the passive 

elements such as the sun shield, the instrument also includes active thermal control of the 

sensitive parts of the electronics such as the radiometer front end. 

 

C.  The Radiometer 

There are three radiometers in Aquarius, one for each beam.  These are Dicke 

radiometers that use noise injection for calibration.  The design is based on research by 

the GSFC / JPL team to develop a highly stable radiometer system [Wilson et al, 2005;  

Pellerano et al, 2004].  The radiometer consists of four sections as indicated in the 

functional diagram (Figure 10):  a) The feed assembly which consists of the orthomode 

transducer (OMT), Calibration Noise Diode (CND) and diplexer;  b) Radiometer front 

end (RFE) which provides the first stage amplification and includes the Dicke load, the 

reference noise diode (ND), and a hybrid where the two polarization signals are 

combined to form sum and difference signals (which are combined after detection to 

compute the third Stokes parameter);  c) Radiometer back end (RBE) which provides 

gain and filtering and includes the detector;  d)  The digital processing unit (DPU) which 

provides control and is the interface with the rest of the spacecraft.  Each section is 
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discussed briefly below.  See [Pellerano et al, 2006 and Le Vine et al, 2007b] for more 

detail and the physical layout of the hardware. 

 

1.  Feed Assembly:  A prominent element of the feed assembly is the diplexer, a large 

cavity filter that permits the scatteromter (1.26 GHz) and radiometer (1.413 GHz) to 

share the same OMT-Feed.  This provides adequate separation during scatterometer 

receive (i.e. the time between pulses).  The radiometer is also protected by limiters, and 

during scatterometer transmit (one millisecond), the radiometer front end is disconnected 

from the antenna path by switching to the Dicke load.  The feed assembly also contains 

one of two reference noise sources, the CND.  The CND is used to calibrate the sum and 

difference paths out of the hybrid for phase and amplitude balance.  This is needed to 

compute the third Stokes parameter which is done by adding the two signals (sum and 

difference) after detection. 

 

2.  Radiometer Front End (RFE):  The RFE includes the second reference noise source 

(ND) and the Dicke load.  The signal from the noise diode ND is alternatively added to 

the signal from the antenna and Dicke load as part of calibration.  The duty cycle has 

been chosen to optimize calibration and minimize noise (Wilson et al, 2005).  There are 

four outputs from the RFE for each horn:  V-pol, H-pol, (V+H) and (V-H), the later two 

provided by a hybrid.     The reference sources in the RFE (Dicke load and ND) are at the 

heart of the radiometer accuracy and stability.  Careful attention has been given to 

temperature control of the RFE (0.1 C rms over 7 days) and to stability and knowledge of 

the noise sources.  The radiometer stability requirement of 0.13 K over 7 days has been 

demonstrated in prelaunch testing. 

 

3.  Radiometer Back End (RBE):  The radiometer back end contains additional 

amplification, band-pass filtering, and the detectors for each channel.  It also contains 

voltage-to-frequency converters that convert each analog output to a series of pulses 

whose frequency is proportional to the amplitude of the signal.  (The frequency is 

counted and stored digitally in the DPU).  Temperature control of the RBE is less critical 

to the stability of the radiometer because the RBE is located behind all the calibration 
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sources and after the first stage gain in the RFE.  In the physical layout of the hardware, 

the RBE has been separated from the RFE to facilitate thermal control of the critical 

elements in RFE [Le Vine et al, 2007b].     

 

4.  Digital Processing Unit (DPU):  The final section of the radiometer is the digital 

processing unit (DPU).  The pulse trains from the RBE are counted asynchronously, and 

the frequency determined, by the DPU.  The DPU houses the radiometer controller, 

collects temperature and housekeeping data, stores data and is the interface with the 

spacecraft (e.g. for command and control and data downlink). 

 

The radiometer collects data and goes through calibration in a sequence of 12 steps of 10 

ms each (120 ms cycles).  The first millisecond of each step is blanked to accommodate 

the scatterometer transmit pulse.  Data is collected during the ensuing 9 ms.  The first 7 

steps are antenna data (antenna temperature) followed by a look at the CND followed by 

4 calibration steps (combinations of the Dicke load and/or ND).  The calibration data is 

averaged for 5.76 s and the radiometer NEDT in 5.76 s is about 0.08 K.  The complete 

measurement error budget, including radiometer performance and the sampling strategy 

for achieving 0.2 psu, is summarized in Table 2 of Lagerloef et al, 2008. 

 

D.  The Scatterometer 

Although Aquarius has three separate radiometers, one for each feed, it has only one 

scatterometer.  The scatterometer signal is rotated (time shared) among the three feeds 

and two polarizations. The operation consists of a 6 steps at each the feeds:  (1) transmit 

at H-pol and receiving at V-pol;  (2) receive at V-pol (noise only, no transmit);  (3) 

transmit at V-pol and receive at V-pol;  (4) transmit at V-pol and receive at H-pol;  (5) 

receive at H-pol (noise only, no transmit);  (6) transmit at H-pol and receive at H-pol.  

This sequence permits the measurement of the backscatter signal at HV, VV VH and HH 

together with the measurement of the noise (no transmit) in each path.  Only the 

amplitude is measured (no phase information).   The scatterometer transmits a 1 ms pulse 

with 100 Hz PRF (pulse repetition frequency) which results in 10 ms between pulses.  

During the 9 ms after the scatterometer transmit operation both the radiometer and the 
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scatterometer observe the scene (receive only) and the diplexer insures isolation of the 

backscatter signal from the radiometer front end.  When the scatterometer cycle of 

measurements at the four polarization steps and two noise-only steps is completed at one 

beam (feed horn), the scatterometer is switched to the next beam and the cycle is 

repeated.  This is accomplished with a switching network in the scatterometer front end 

between the scatterometer output and the diplexer.  A complete switching cycle over 3 

antenna beams takes 18 pulse steps, 12 for echo measurements and 6 for noise only 

measurements. The time to complete one full scatterometer switching cycle is 0.18 

seconds. In 0.72 s, the radiometer will have completed 6 full cycles and the scatterometer 

4 full cycles. Data for each of the 4 polarizations will be recorded and stored.  Ground 

processing will compute the total power (VV + HH + VH + HV), which is insensitive to 

the Faraday rotation, to retrieve the roughness correction for the radiometer.  The 

individual terms can be retrieved using the Faraday rotation angle obtained from the 

radiometer measurements (i.e. third Stokes parameter). 

 

The scatterometer electronics are divided into five boxes, the Scatterometer Front End 

(SFE), Scatterometer Back End (SBE), Scatterometer Chirp Generator (SCG), Solid State 

Power Amplifier (SSPA) and Low Voltage Power Supply (LVPS). The scatterometer is 

connected to the antenna system through the diplexer and all of the scatterometer 

electronics with the exception of the diplexer are mounted away from the OMT-feed 

itself and away from the temperature sensitive elements of the radiometer [ Le Vine et al, 

2007b].   

 

The scatterometer front end (SFE) contains the switch, which cycles the output of the 

single scatterometer among the three feeds and two polarization ports, and also a 

calibration loop.  The output of the switch also contains a load position which can be 

used for test purposes (i.e. to transmit into the load).  The calibration loop employs a 

coupler to leak a small portion of the transmit energy into the receiver during each 

transmit pulse.  This small leakage signal is proportional to the product of transmit power 

and receiver gain and is used to calibrate the radar echoes from the surface.  The SFE also 

includes a band pass filter to help suppress RFI. 
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The received signal is processed to baseband in the scatterometer back end (SBE).  The 

SBE includes amplifiers, band pass filters and mixers to convert the radar echoes to 

baseband at 4 MHz.  The actual power detection is performed in the instrument control 

and data system (ICDS) where the analog-to-digital (A/D) conversion is done followed 

by voltage squaring and accumulation.  The ICDS also serves as the interface for both the 

radiometer and scatterometer with the spacecraft bus.  To insure that the calibration loop 

signal is within acceptable dynamic range, the SBE includes a step attenuator following 

the low noise amplifier. The step attenuator is switched to low insertion loss (about 2 dB) 

during the range gate window to collect echoes and is switched to high insertion loss 

(about 50 dB) during transmit to permit acquisition of data from the calibration loop. The 

SBE also includes an 8-MHz Stable Local Oscillator (STALO) which together with 

frequency mutipliers, generates the frequencies needed by the mixers and filters to move 

signals up and down from baseband and for timing.   

 

The scatterometer chirp generator (generally considered to be part of the SBE) is used to 

modulate the transmit pulse.  The chirp has a bandwidth of 4 MHz.  Also, part of the 

scatterometer are the Low Voltage Power Supply (LVPS) which provides power to the 

Solid State Power Amplifier (SSPA) which powers the transmit pulse.  The center 

frequency (carrier frequency) of the transmit pulse is 1.26 GHz.   

 

Thermal control is also part of the calibration strategy for the scatterometer.  The thermal 

design employs passive control to keep the temperature of the electronics within about 1o 

C.  This is expected to keep the change of the total electronics loss to about 0.3 to 0.4 dB. 

To calibrate the temperature dependence of the various electronics components, pre-

launch calibration tests have been conducted to characterize the loss of the calibration 

loop, step attenuator, beam-select switch and other critical elements as a function of 

temperature.  The goal is to ensure that the residual calibration stability error is much less 

than 0.1 dB after the effects of temperature drift have been corrected.   
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VII.  CONCLUSION 

 

As of the writing of this manuscript, Aquarius is completing Integration and Testing 

(I&T) at JPL.  It is scheduled to be shipped to Argentina to begin integration with the 

SAC-D in May of 2009.  Launch is scheduled one year later, May, 2010, at the NASA 

Western Test Range, Vandenberg Air Force Base, California. 
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Figure Captions 
 
Figure 1:  The geometry for microwave remote sensing of the ocean. 
 
Figure 2:  The model function relating the brightness temperature to the physical 
temperature of sea water.  The data presented are for normal incidence (θ = 0) and were 
computed using the dielectric constant reported by Klein and Swift [1977]. 
 
Figure 3:  The sensitivity to changes in brightness temperature for nadir (broken curve) 
and at 40 degrees (solid curves).  The calculations are for a surface with SSS = 35 psu 
and SST = 20 C.   
 
Figure 4:  Top: Ship tracks and derived salinity map.  Bottom:  Comparison of salinity 
from the R/V Henlopen (solid) and derived from ESTAR measurements (broken) along a 
track where the aircraft flew over the ship. 
 
Figure 5:  Comparison of the salinity maps derived from aircraft remote sensing with 
ESTAR (left) and from the shipborne thermosalinographs (right).  The ships took 3 days 
to make the map whereas the aircraft took 3 hours which accounts for some of the 
differences. 
 
Figure 6:  Schematic indicating the dominant factors at play in remote sensing of ocean 
salinity from space at L-band.  “Galactic, Cosmic” represents the contribution from the 
cosmic background and a multitude of sources outside the solar system. 
 
Figure 7:  The remote sensing geometry.  The x-axis is in the direction of motion, the z-
axis points to nadir and the y-axis points away from the Sun.   The Aquarius instruments 
look to the night time side of the orbit, roughly perpendicular to the flight direction and 
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covering a swath of 380 km.  The Microwave Radiometer (MWR) is an 8 beam 
pushbroom radiometer.  The two MWR footprints are aligned to cover the same swath as 
Aquarius.   
   
Figure 8:  Schematic showing the Aquarius/SAC-D observatory with Aquarius in its 
deployed configuration.  Aquarius ends at the sun shield.  To the right is the SAC-D 
service platform ending with the solar panels.  The reflector is 2.5 m in diameter. 
 
Figure 9:  (Left) Drawing showing Aquarius in its stowed position inside the Delta-II 
launch shroud and (right) the actual flight hardware in its stowed configuration during 
acoustic testing at JPL.  Aquarius mates to SAC -D along a ring just barely visible at the 
base of the sun shield. 
 
Figure 10:  Radiometer schematic showing the major steps in processing. 
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TABLE I 
Aquarius / SAC-D  Instruments 

 
 
 

TABLE II 
Parameters of the Aquarius Instrument 

 
Orbit  Antenna 

Altitude                                  657 km 
Sun-synchronous                   6 pm ascend 
Inclination                              98 deg 
Coverage                                7 day global 
Swath                                     390 km 

 Main Reflector                   2.5 m offset 
Beam look angles (deg)     25.8, 33.8, 40.3 
Local incidence (deg)        28.7, 37.8, 45.6 
Resolution                          76x94, 84x120, 
                                           96x156 km 

Radiometer  Scatterometer 
Frequency                              1.413 GHz 
Polarization                            Polarimetric 
Sample time                           10 ms 
Integration time/sample         9 ms 
NEDT (5.76 seconds)            0.06K 
Calibration Stability              0.13K 

 Frequency                           1.26 GHz 
Polarization                         HH, VH, HV, 
                                                    VV 
PRF                        100 Hz 
Pulse width                          0.98 ms  
Calibration                           0.1 dB 
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Figure 1:  The geometry for microwave remote sensing of the ocean. 
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Figure 2:  The model function relating the brightness temperature 
to the physical temperature of sea water.  The data presented are 
for normal incidence (θ = 0) and were computed using the 
dielectric constant reported by Klein and Swift [1977]. 
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Figure 3:  The sensitivity to changes in brightness temperature for 
nadir (broken curve) and at 40 degrees (solid curves).  The 
calculations are for a surface with SSS = 35 psu and SST = 20 C.   
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Figure 4:  Top: Ship tracks and derived salinity map.  Bottom:  
Comparison of salinity from the R/V Henlopen (solid) and 
derived from ESTAR measurements (broken) along a track 
where the aircraft flew over the ship. 
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Figure 5:  Comparison of the salinity maps derived from aircraft remote 
sensing with ESTAR (left) and from the shipborne thermosalinographs 
(right).  The ships took 3 days to make the map whereas the aircraft 
took 3 hours which accounts for some of the differences. 
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Figure 6:  Schematic indicating the dominant factors at play in remote 
sensing of ocean salinity from space at L-band.  “Galactic, Cosmic” 
represents the contribution from the cosmic background and a multitude 
of sources outside the solar system. 
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Figure 7:  The remote sensing geometry.  The x-axis is in the direction of 
motion, the z-axis points to nadir and the y-axis points away from the Sun.  
The Aquarius instruments look to the night time side of the orbit, roughly 
perpendicular to the flight direction and covering a swath of 380 km.  The 
Microwave Radiometer (MWR) is an 8 beam pushbroom radiometer.  The 
two MWR footprints are aligned to cover the same swath as Aquarius.   
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Figure 8:  Schematic showing the Aquarius/SAC-D observatory with 
Aquarius in its deployed configuration.  Aquarius ends at the sun 
shield.  To the right is the SAC-D service platform ending with the 
solar panels.  The reflector is 2.5 m in diameter. 
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Figure 9.  (Left) Drawing showing Aquarius in its stowed position inside 
the Delta-II launch shroud and (right) the actual flight hardware in its 
stowed configuration during acoustic testing at JPL.  Aquarius mates to 
SAC -D along a ring just barely visible at the base of the sun shield. 
  

 
 
 
 
 
 
 

 42



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10:  Radiometer schematic showing the major steps in processing. 
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