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EO-1 Beginnings

Original Mission Goals (2000):
e Enable entirely new measurements and
science missions from space.

oFly three revolutionary Land Imaging
instruments to collect multispectral and
hyperspectral scenes over the course
of the mission in coordination with the
Landsat-7 Enhanced Thematic Mapper
(ETM+).

- Detailed comparisons with ETM+ images were

carried out to validate these instruments for
future missions.

e Reduce costs of future space and Earth
science missions with:

- Breakthrough technologies in lightweight materials,
- High performance integrated detector arrays, and
- Precision spectrometers.



Earth Observing-1 (EO-1) Mission

Mission Scientist, Dr. Elizabeth Middleton (NASA/GSFC, 614.4)
Mission Manager, Mr. Daniel Mandl (NASA/GSFC, 581)

ALI
Band Band Names Hyperion
designations (wavelength, um)
Pan Pan (0.48 - 0.69)
MS-1p (0.433 — 0.453)
Blue
MS-1 (0.450 — 0.515)
Green MS-2 (0.525—0.605) | Continuous
Spectra
Red MS-3 (0.633-0.690) | 0.4—2.4 um
MS-4 (0.775-0.805) | 242 Bands
NIR Bandwidth:
MS-4p (0.845 — 0.890) 10nm
MS-5p (1.20 — 1.30)
SWIR MS-5 (155 — 1.75)
Bri-S=n?r s L MS-7 (2.08 — 2.35)
il Spatial Pan: 10m, MS: 30m 30m
_ ’ﬁ =9 Resolution
http://eol.gsfc.nasa.qov/ Swath width ~35km ~7.5km
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Vegetation and Bare Soil Spectra for
Hyperion and ALI
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EO-1 and Landsat 7
Descending Orbit Ground Tracks

Landsat 7
ETM+

EO-1
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EO-1 Off-Nadir and Landsat 7
Descending Orbit Ground Tracks
/

EO-1
Atmospheric
Corrector
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The pitch rate across the moon is the same as that used for earth

imaging. This results in a 8X oversampling of the moon. 9



g
L
Q
=]
c
m
-
(=]
a
El

e 30 m pixels

e 7 km swath width

e Hyperspectral
-~10 nm bands
- 350 -2500 nm

550 750 950 1150 1350 1550
Wavelength (nm)

1750

1350

2150

2350



Hyperion Spectral Characteris

e Radiometric performance model
based on a standard mid-latitude
summer scene with a 60° Solar
zenith angle and 30% surface
reflectance

AVIRIS (State of the Art 2002-2004)
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Spectral Mixture
Models

IRIS: June 14, 2001

HYPERION: June 12, 2001
NPV, GV, Soil: RGB




Hyperion Science and
Technology Appllcatlons
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EO-1 Acquisitions, Dec 2000 - Mar 2011

To date, 52,500+ scenes have been collected

EO-1 Observations MSO Sites CEOS Sites Volcanoes > 10 Observations
° A A L J O




ALl Pan Enhanced Hyperion EO-1ALl
Bands 3 -2-1 7-5- 4 Equiv Bands 7 -5-5’

Eruption of Mt. Etna, Si

July 22, 2001

ON Temperatures for Etna

Spectrum  CrustT°C  Hot ToC Area Hot

J13-CTB 346 C 994 C 0.0025
J 13-MM 874 C 876 C 0.45
J13-CTS 976 C 978 C 0.47

J 13-TipX 210C 900 C 0.00034

Radiance

J22-MS 726C  1075C 0.090
J22-CX 487C  10/5C 0.022 ; .
J 22-RS* 1054C 1058 C 0.690 800 1000 1200

Wavelength



Atmospheric correction of Hyperion spectra with
ATREM (AT) and ACORN (AC) for six surface types
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A high overall correlation (r>0.98) was obtained for
ACORN vs. ATREM spectra. For individual

categories, 0.92 = r <0.99.
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EO-1 Hyperion
(30 m)
6 dates in 2008
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EO-1 as a Pathfinder for SensorWebs
Enables Rapid Response with Remote Sensing




SensorWeb: High Level Architecture

floods, fires, [

volcanoes etc Data SensoriL .
T { | Processing Node ':"F""""'““H
= gt Documents

Web
: Web Web
T -:u;:m r:at!e Processing Coverapge
s ; e Service Service SensorML | |
WeTs i W e
e
= _' = T SensorML
-§ . Capabilities
= = Cocuments
=
E m g | Wehb Feature
':—"6 E .4 | Service (WF 5)
E E 1%' Sensor Planning
w0 = 9 | Service (SPS5)
S
-E E % E E‘ Sensor Alert
£ | 2 | ESE | Service(5AS)
Sensor
—  Jbservation
Service (505)
Satellite Data Mode
L]
- Workflow s
Campaign-
MHHHQ'EF-—'

The SensorWeb architecture was developed on EO-1 as a pathfinder effort to encapsulate sensors
and data processing algorithms with Open Geospatial Consortium standardized Web 2.0 Service
interfaces. Thus, future missions will be able to significantly lower the cost of interoperating,
automating procedures and enable rapid customization of data products.



The EO-1 Advanced Land Imager (ALl) observed the BP oil spill in the Gulf of Mexico on June 26, 2010.
Captured in this pan-sharpened image are streams and ribbons of oil impacting the Mississippi barrier
islands of Horn Island (left) and Petit Bois (right).



ALl Imagery of Manam Volcano, New Guinea (June 2009)

June 28, 2009
True-Color Image from ALI
Manam Volcano, New Guinea

Manam Volcano, just off the coast of mainland
Papua New Guinea, released a faint plume on June
28, 2009. Bright white clouds hover over the
volcano’s summit. Clouds often collect over peaks,
but these clouds could result from water vapor
released by the volcano. Slightly darker in color, a
pale blue-gray plume blows west-northwest from
the summit and over the Bismarck Sea. The image
below is a ground picture of the volcano.

Images are from NASA’s Earth Observatory web
site (http://earthobservatory.nasa.gov/)




ALl Imagery of Toxic Sludge in Hungary (Oct. 2010)

October 9, 2010
True-Color Image from ALI
Toxic Sludge in Hungary

On October 4, 2010, an accident occurred at
the Ajkai Timfoldgyar alumina (aluminum
oxide) plant in western Hungary. A corner wall
of a waste-retaining pond broke, releasing a
torrent of toxic red sludge down a local
stream. Several nearby towns were
inundated, including Kolontar and Devecser,
where the sludge was 2 meters deep in places.
Four people were killed immediately, likely
from drowning, and several more were
missing. Dozens of residents were hospitalized
for chemical burns.

The alumina plant appears along the right
edge of both images, and incorporates both
bright blue and brick red reservoirs. The
breach of the retaining wall is apparent in the
close-up view. Sludge cut a channel through
the northwest corner of the waste reservoir
and spread onto nearby fields. The sludge
forms a red-orange streak running west from
the plant. The wide-area view shows the spill
thinning but remaining discernible for several
kilometers to the west. The New York Times
reported that the stream nearest the plant
empties into larger rivers. The BBC reported
that authorities were pouring plaster into the
Marcal River in hopes of preventing the sludge
from reaching the Danube River.

Images are from NASA’s Earth Observatory web
site (http://earthobservatory.nasa.gov/)




ALl Imagery of Neumayer Glacier, South Georgia Island (Jan. 2005)

January 11, 2005
True-Color Image from ALI
Neumayer Glacier, South Georgia Island

South Georgia is an arc-shaped island that lies some 2,000 kilometers east of the southern tip of South America. Neumayer Glacier, on
the island's east coast, showed very little positional change for many decades. But the glacier began losing significant mass, retreating
by roughly 2 km from 1970 to 2002. From 2005 to 2009 (bottom), the glacier retreated an additional 1 kilometer.

Please flip back and forth between this slide and the

Images are from NASA’s Earth Observatory web next to see the glacier before and after the breakup.
site (http://earthobservatory.nasa.gov/)




ALl Imagery of Neumayer Glacier, South Georgia Island (Jan. 2009)

January 4, 2009
True-Color Image from ALI
Neumayer Glacier, South Georgia Island

South Georgia is an arc-shaped island that lies some 2,000 kilometers east of the southern tip of South America. Neumayer Glacier, on
the island's east coast, showed very little positional change for many decades. But the glacier began losing significant mass, retreating
by roughly 2 km from 1970 to 2002. From 2005 to 2009 (bottom), the glacier retreated an additional 1 kilometer.

Please flip back and forth between this slide and the

Images are from NASA’s Earth Observatory web previous to see the glacier before and after the breakup.
site (http://earthobservatory.nasa.gov/)







Lunar Calibration Results

Differences between Rolo model and Hyperion

measurements remain stable (within 5%) over time

Hyperion Lunar Calibration Trends for Selected Bands
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Temporal Profile
Selected Hyperion Bands

Temporal variation in spectral characteristics, Railroad Valley, NV

100
EO-1 Hyperion Spectral Bands T e N
90 - "-;C standard deviation - 40 .2
g0 . ot Blue447 = (5reen549 < 40 N T vu"\\” 30 g
— Red651 NIR854 = 0 8¢
70 - o S SN T =
= == FR1003 -«- FR1679 E ST _Cé;
X 60 - - a O 0 S
a — -FR2204 450 950 1450 1950 2450
o 50 - Waveiength (nm)
E 4w
Q
30 -
20 -
10 -
0
Day | 12 | 41 | 120 135 165 174 176 | 181 | 197 | 200 229 | 234 | 272 | 284 | 288
o 2008 12006 | 2007 | 2007 | 2001 | 2004 | 2008 | 2001 | 2001 | 2007 | 2001 | 2007 | 2005 | 2005 | 2007
ear

Acquisition (day and year)




Konza --1yr burn (K 1D) & 4 year burn (K 4B)
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NASA’s strategic goal

to advance Earth System Science to meet the challenges of climate
and environmental change

How is the Earth changing and what are the consequences for
life on Earth?

— How is the global Earth system changing?(Characterize)

— What are the sources of change in the Earth system and their
magnitudes and trends? (Understand)

— How will the Earth system change in the future?(Predict)

— How can Earth system science improve mitigation of and
adaptation to global change? (Apply)



NQ\-% HyspIRI Decadal Survey Climate Scien

HyspIRI: “A hyperspectral sensor (e.g., FLORA) con
with a multispectral thermal sensor (e.g., SAVIl) in lo
Earth orbit (LEO) i1s part of an integrated mission

concept [described in Parts | and |l] that is relevant
several panels, especially the climate variability p




zmmmz NRC Decadal Survey - HysplRI

HyspIRI: “A hyperspectral sensor (e.g., FLORA) combined with a multispectral thermal sensor (e.g.,
SAVII) in low Earth orbit (LEO) is part of an integrated mission concept [described in Parts | and Il of the
Decadal Survey] that is relevant to several panels, especially the climate variability panel.”
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Key HyspIRI Climate Objectives from the
Decadal Survey and IPCC

« Ecosystem Measurements for Climate Feedbacks

 Black Carbon/Dust Effects on Snow and Ice

« Carbon Release from Biomass Burning

« Evapotranspiration and Water Use and Availability

« Critical Volcanic Eruption Parameters




All HyspIRI Decadal Survey Science and
DS Climate Science is Achieved

Imaging Spectrometer (VSWIR)

— Pattern and Spatial Distribution of Ecosystems and their Components
— Ecosystem Function, Physiology and Seasonal Activity

— Biogeochemical Cycles

— Changes in Disturbance Activity

— Ecosystem and Human Health

— Earth Surface and Shallow Water Substrate Composition
Multi-Spectral Thermal InfraRed (TIR)

— Volcanoes/Earthquakes
Wildfires
Water Use and Availability,

Urbanization/Human Health

Earth surface composition and change

Combined Imaging Spectrometer and Multi-Spectral Thermal Science
— Coastal habitats, and inland aquatic environments

- Wildfires

— Volcanoes

— Ecosystem Function and Diversity

— Land surface composition and change

— Human Health and Urbanization
Key HyspIRI climate objectives from the Decadal Survey and IPCC

— Ecosystem Measurement for Climate Feedback

— Black Carbon/Dust Effects on Snow and Ice
— Carbon Release from Biomass Burning
— Evapotranspiration and Water Use and Availability

—  Critical Volcanic Eruption Parameters
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Ecosystem Measurements for Climate Feedbacks

Measuring the Terrestrial Biosphere
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To Achieve the HysplRI Climate Contribution,
Global Coverage is Required with Revisit <20 Days

t)
A e
et A 2

r‘?'—_‘f_—:-__-
[ @ Location of EO-1 collects

O Sites with 10 and more EO-1 collects

A MSO study sites ] T |

* EO-1 Hyperion acquisitions in 10 years.
Hyperion is a fully successful NASA
Technology sampling Mission.

e HyspIRI VSWIR provides complete
terrestrial coverage every 19 days.

* |t would take Hyperion 100 years to
acquire what HyspIRI measures in 1 year.
* For climate, impact, adaptation and
vulnerability measurements, HysplIRI
(VSWIR and TIR) has orders of magnitude
more scientific coverage and quality than
any planned international mission.
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NASA HysplIRI NRC Decadal Survey Mission

(1) Vegetation Functional Type (species-type)
(2) Vegetation physiological condition (health, status)
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NASA HysplIRI NRC Decadal Survey Mission
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KCQA Ecosystem Measurements for Climate Feedbacks

@ HysplRI Critical Role in Climate Carbon Cycle Scie

NPP = PARi * fAPAR * LUE

h 2 =
| Biomass = f(fraction

>

NPV Production (mortality) = fNPV cover * carbon density




Climate: Response to Disturbance

Cerro Grande Flre Severlty, Los Alamos NM, Ray Kokaly
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Spatial Resolution

This Science Working Group has found 60 m in conjunction
with excellent measurement position knowledge to be
optimal to answer these science question globally.
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HyspIRlI is Required to Reduce Uncertainties in the Land Carbon Fluxes

Global carbon dioxide budget :
(laatonines of cetbon per ey HysplIRI Accurate constraint of Carbon fluxes

0 aaak / associated with land-use and

terrestrial vegetation are key missing
elements for closing the carbon
budget.

Fossil fuel & Atmospheric
cement growth

6404

7.7 +05

Land sink

2.6 0.9
2.7+1.0

Ocean sink
22x04

The HysplRI based improvement is
N " essential for sound policy decision
_— making and understanding climate

impacts.

Addresses critical climate carbon
feedback uncertainty (IPCC WG-2)

Geological
reservoirs

Global CO2 budget for 1990-2000(blue) and 2000-2008 (red) (GtC per year). Emissions from fossil-fuel and landuse change are based on economic and deforestation
statistics. Atmospheric CO2 growth is measured directly. The land and ocean CO2 sinks are estimated using observations for 1990-2000 (Denman et al. IPCC 2007).
For 2000-2008, the ocean CO2 sink is estimated using an average of several models, while the land CO2 sink is estimated from the balance of the other terms.

9/13/2010 HyspIRI Mission Concept Update - NASA HQ 43



Ecosystem Measurements for Climate Feedback
Four Mainstream Land Carbon Models Curr

Major Model Inputs CENTURY CASA SiB3
Vegetation Type Prescribed General Land Cover General Land Cover
Plant Functional Types Prescribed — Prescribed
Fractional Carbon Cover — — —_
Vegetation Greenness — NDVI NDVI
Fractional PAR Absorption — NDVI NDVI
Leaf Area Index (0-4 LAl units) Prescribed NDVI NDVI
Leaf Area Index (4-10 LAl units) — — —
Canopy Gap Freguency and Size — — —
Light-use Efficiency (leaf water, N) — — —
Live vs. Senescent Biomass — — —_
Woody vs. Leaf Biomass Prescribed Prescribed Prescribed
Canopy Allometry Prescribed Prescribed Prescribed




Spectral Albedo

An urgent Global Science Issue Identified by IPCC
Albedo and Black Carbon/Dust Effects in Snhow/Ice

Example: What is causing the \ 3:“&’« 120

downwasting and retreat of Himalayan e —
glaciers?

I
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For snow and ice in the Himalaya, increasing
temperatures and increasing dust and soot
combine in unknown proportions to accelerate
melt through their changes in albedo. HysplRI
is the only sensor that allows us to atiribute
changes in albedo into effects from
temperature and dust/black carbon and at a
fine  enough  spatial resolution that
heterogeneous terrain can be resolved. Mulii-
band sensors such as NPOESS VIIRS have
neither capacity.
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High Spatial and Temporal Resolution Requ
to Accurately Measure Evapo-transpiration |{
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Critical Volcanic Eruption Parameters

ASTER Observations of the Eyjafjallajokull Eru
19 April 2010 - 12:51 UTC
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Critical Volcanic Eruption Parameters

Eyjafjallajokull
Iceland Volcano

Eruption
April 19 2010
MODIS image of
ash plume.
(c) HyspIRI Response vs. SO, Transmission
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rdramerters
Climate and Applications

ASTER Observations of the Eyjafjallajokull Eruption
1€ A-ro (10 - 12:51 UTC
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HysplRI detects
agricultural fires
which are a major
carbon contributor
and cannot be
reliably detected
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Carbon Release from Biomass Burning

Fire Radiative Energy

FRE-based Estimated OCBC : 2003
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nadir view

Use Fire Radiative Energy to
estimate combusted biomass:
Need 3-5 um data

Ellicott et al 2009
Wooster et al 2002 and 2003



(C) to the atmosphere each year. Biomass burnmg constitutes
~25% of all global C emissions.

Region Fire emissions
1997-2009
average
(10759 Cyr')

Central and northern 0.04
South America '
Southern Souh 0.7 T,
Northern Africa 0.48 | <omes | Need 4 u
Southern Africa 0.27 S oo ? 7 (o measu

. B tﬁ Radiative
Southeast Asia 0.04 £ 1> (FRP) to
Boreal (north of 38°N) 0.18 T oo | T deterimin
Other 0.73 g |t Blomass

Connbusted Biammss (k) ~4.37 % 107, Exrgy (1) CO m bu St[
Global 2.01 ool



Challenges

High Data volume

Low Latency Data

Atmospheric Correction for L2 Products
Data Processing Chain

Data archive/distribution
Calibration/Validation

Combined VSWIR and TIR

Global Collections

Regional Collections



SensorWeb Design for User-Defined L2 Products
Prototype for HysplRI Usmg EO 1

Agent Converts Weka Tree Object

Machine Learning to WCPS Algorithm Dynamic EO-1, HyspIRI ...
Supervised Classifier Upload "<
(Regression Tree) SRR ||~ ¥
Refined Offline o o
—_—— Parse |...zs=

tree |[m= com===s, b‘ GlobalHawk,

Wekato [NEEE— 2 Ikhana, B200 ...
WCPS = =
Translator - : . 'm  NASACloud
i aoup Infrastructure As
0l = COMPUTING A Service
‘ et Vi

o
@ " -II

Data Distribution
And Notification

Custom Algorithm Upload
With Satellite Tasking,

Image Acquisition & Processing Custom
And Data Delivery Data Product
(KMZ, PNG...)

WCPS — web coverage processing service



Fire SensorWeb Experiments with U.S. Forest Service

From 2003 to 2009, SensorWeb team conducted a variety of POPSCI & CAlCEE b kil
experiments to identify how best to inject SensorWeb technology into B
assisting Forest Service to manage large wildfires and assist decision s s s ko S o
- . . . NASA's High-Tech Wildfire Weapons
makers. This involved interoperating satellite sensors and an

Unmanned Aerial System sensors to produce useful data products to
assist U.S Forest Service emergency managers.

Detect: National Fire Interagency Center (NIFC) large fire
map and MODIS daily hot pixel maps acted as triggers
Respond: Trigger EO-1 and Unmanned Aerial System (UAS)
images automatically to take a detailed look

Product Generation: Active fire maps, burn scar maps
Delivery: Experimented with various web based delivery such
as mash up displays and RSS feeds

Burned Area

Reflectance
Classification
(BARC) map -

used by Forestry
Service to efficiently

“An exciting aspect of the SensorWeb capability is the ability to
automatically image, process and deliver higher resolution
satellite imagery products online with little effort.”

Everett Hinkley

National Remote Sensing Program Manager

AMS hot pixels, MODIS hot pixels and EC-1 ALT Burn Scars




Step 3 Improvement for EO-1 - Overview

Hyperion and ALI  External users,

NASA Investigators

Level O especially |
Processed data  international (e.g. Technologists
frogn GSFC, disaster\workers)

buﬁing 3 server

Starlight 100
Gigabit Ethernet Level 1R and Level 1G Processing for ALI & Hyperion I
Exchange Atmospheric Correction for ALl & Hyperion
10 Gbps N Web Coverage Processing Service (WCPS) to enable

users to customize Level 2 products

Eucalyptus-based Elastic Cloud SW
300+ core processors

40 x 2 Thytes of storage

10 Gbps connection to GSFC

- being upgraded to 80 Gbps (Part of OCC)

At Univ of Illinois at Chicago

Supplied by Open Cloud Consortium

v
Nambia Flood
Dashboard

2 year data product
archive

Open Science Data Cloud Virtual Machines &

hitp server to VM's

OCC = Open Cloud Consortium

Phase 3 Add Elastic Cloud Ongoing Feb 2011




Transformation to On-Demand Product Cloud Part 1
EO-1 Data Product Pipeline

EO-1 Level O

Processor
Server

Storage — 1 year
Hyperion & ALI Level 1R

EO-1 Level EO-1 Hyperion Storage — Available
Processor Atmospheric Correction Algorithms
Service ELAASH Service
Hyperion Level 1R _ ’ algorithms ¢
ALI Level 1R EO-1 Hyperion J [ WCPS Algorithm
tmospheric Correction Generation Service
EO-1 Level ATREM Service «\
Geospatially

v

Storage — 1 year
Hyperion & ALI Level 1
and Level 1G AC

WCPS Runtime
Service

v

Corrected
Service

Hyperion Level 1G

ALl Level 1G e pm—
EO-1 ALI Atmospheric Storage — 1 year User Defined L2 Gengrate a
Correction — FLAASH Hyperion & ALI Level 1G Products new product

Service Wltht_ iS new
algorithm
Select
algorithm &
data to run
against o,

Phase 3 Add Elastic Cloud Ongoing Feb 2011
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