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Fuel Burn Estimation Using Real Track Data 

Gano B. Chatterji*  
University of California Santa Cruz, Moffett Field, CA, 94035-1000 

 

A procedure for estimating fuel burned based on actual flight track data, and drag and 
fuel-flow models is described. The procedure consists of estimating aircraft and wind states, 
lift, drag and thrust. Fuel-flow for jet aircraft is determined in terms of thrust, true airspeed 
and altitude as prescribed by the Base of Aircraft Data fuel-flow model. This paper provides 
a theoretical foundation for computing fuel-flow with most of the information derived from 
actual flight data. The procedure does not require an explicit model of thrust and calibrated 
airspeed/Mach profile which are typically needed for trajectory synthesis. To validate the 
fuel computation method, flight test data provided by the Federal Aviation Administration 
were processed. Results from this method show that fuel consumed can be estimated within 
1% of the actual fuel consumed in the flight test. Next, fuel consumption was estimated with 
simplified lift and thrust models. Results show negligible difference with respect to the full 
model without simplifications. An iterative takeoff weight estimation procedure is described 
for estimating fuel consumption, when takeoff weight is unavailable, and for establishing 
fuel consumption uncertainty bounds. Finally, the suitability of using radar-based position 
information for fuel estimation is examined. It is shown that fuel usage could be estimated 
within 5.4% of the actual value using positions reported in the Airline Situation Display to 
Industry data with simplified models and iterative takeoff weight computation.                    

I. Introduction 
he amount of fuel consumed is an important metric for benefit assessment of air traffic management concepts 
being considered for improving throughput, increasing capacity and reducing delays. It is also an important 

metric for environmental impact because for each kilogram of fuel consumed, three kilograms of carbon dioxide, a 
greenhouse gas, is generated. The main motivations for developing the fuel estimation method is to establish a 
baseline for the current operations and based on it determine benefits of the proposed four-dimensional trajectory 
management concepts in terms of fuel usage. Alternative procedures for efficient descent, terminal area scheduling 
and spacing, and departure release can also be evaluated based on fuel consumption.   
 Four prior related publications on the subject of fuel estimation are cited here as Refs. 1-4. References 1 and 2 
are focused on departure and arrival fuel consumption below 10,000 feet altitude. Reference 1 compares the 
International Civil Aviation Organization (ICAO) time-in-mode method based fuel consumption with the actual fuel 
consumption reported in Flight Data Recorders. Fuel flow-rate patterns were found to be quite different than the 
ICAO model estimates due to airline climb/descent procedures. This suggests that a fuel consumption model should 
include aircraft state information such as airspeed. Reference 2 presents thrust specific fuel consumption models for 
climb and descent. Model parameters are adjusted to fit the aircraft manufacturer data. Thrust specific fuel 
consumption is multiplied with thrust to determine fuel consumption. Their method assumes nominal climb/descent 
profiles; it does not consider airline and air traffic control specific operational procedures. Furthermore, the method 
is only applicable to lower altitudes. Reference 3 describes a closed-form takeoff weight estimation method 
developed using the constant-altitude-cruise range equation and aircraft design principles. It needs flight-plan data 
and aircraft performance model to estimate the takeoff weight of the aircraft. The amount of fuel needed for climb, 
cruise and descent phases of flight and the maximum load factor are computed as a part of the procedure. The 
method described in this paper differs from Ref. 3 in that it uses the actual flight track data and does not require a 
model for climb and descent; thus, it is more data driven than model based. Reference 4 describes a fuel estimation 
procedure using actual trajectory of aircraft, and Base of Aircraft Data (BADA) drag and fuel-flow models. Their 
procedure is close to the method described here. The main difference is that the fuel estimation procedure is derived 
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Figure 1. Fuel burn estimation procedure. 

from nonlinear equations of motion with point-mass assumptions as opposed to approximations adopted in Ref. 4. 
Additional contribution of the present work is estimation of aircraft and wind states.    
    Main contribution of this paper is development of the fuel estimation procedure from basic principles without 
simplifications. The procedure was validated against flight test data provided by the Federal Aviation 
Administration. A takeoff weight estimation procedure is developed for estimating fuel usage and establishing fuel 
usage uncertainty bounds when the takeoff weight of the aircraft is unknown. Finally, the adequacy of using position 
data acquired by air traffic control radar systems for fuel estimation is examined. Results show that in spite of bias, 
noise and data drop issues, position data could be conditioned for obtaining decent fuel estimates.       
 Section II describes the fuel estimation procedure.  The BADA fuel-flow model is discussed in Section III. The 
equations of motion are given in Section IV. This section also lists an expression for thrust in terms of drag, and 
aircraft and wind states. Section V provides the BADA drag model. Expressions for lift and bank angle estimation 
are listed in Section VI.  Aircraft state estimation is described in Section VII. Results are discussed in Section VIII. 
The paper is concluded in Section IX.  

II. Fuel Burn Estimation Procedure 
 To determine the amount of fuel consumed, altitude, 
airspeed and thrust have to be estimated. Altitude is 
obtained from the trajectory. Airspeed is estimated using a 
sequence of latitude (! ), longitude (! ) and altitude ( h ) 
reports as a function of time that define the four-
dimensional trajectory and wind velocity. Computation of 
thrust requires an estimate of drag, which depends on lift. 
Lift depends on estimated aircraft and wind states, and 
weight. Once lift is determined, the lift induced drag 
coefficient can be computed. Drag is a function of airspeed, 
air density, and the drag coefficient, which depends on the 
aerodynamic configuration of the aircraft. Thrust is 
determined using estimates of aircraft and wind states, drag 
and weight. Fuel-flow rate is then obtained using altitude, 
airspeed and thrust estimates. Weight of the aircraft at a 
point in time is obtained by subtracting the amount of fuel 
consumed up to that time from the initial weight (takeoff weight). Fig. 1 shows the steps of the fuel burn estimation 
procedure. 

III. BADA Fuel Consumption Model 
The BADA fuel consumption model is described for nominal and idle thrust conditions. The nominal fuel-flow 

rate for jets and turboprops is determined by the product of the thrust specific fuel consumption and thrust, T .  
Thrust specific fuel consumption for jets is modeled as a linear function of airspeed, V , and for turboprops as a 
quadratic function of airspeed. Fuel-flow rate is independent of airspeed and thrust for aircraft with piston engines.  
A generalized expression for the nominal fuel-flow rate for these three different aircraft types can be written in the 
following form5:   

 ( )TVfVffffnom
2

3210
!++=  (1) 

where the coefficients in Eq. (1) are given in terms of the BADA coefficients 
1fC and 

2fC in Table 1. Units of the 
BADA coefficients are provided in the Appendix for completeness. Fuel-flow rate is in kg/s with airspeed in knots 
and thrust in Newtons.    
 The minimum fuel-flow rate for idle thrust is modeled as a linear function of altitude, h , for jet and turboprop 
engine types and as a constant for piston engine. This model is described by the following equation:  

 hfff
54min

!=  (2) 
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Altitude is in feet. The coefficients are again defined in terms of BADA coefficients 
3fC and 

4fC  in Table 2. Units 
of these BADA coefficients are also listed in the Appendix.  Fuel-flow rate coefficients for a jet, a turboprop and a 
piston aircraft are listed in Table 6 of the Appendix to give the reader a feel for the contribution of these coefficients 
to fuel-flow rate in Eqs. (1) and (2).  

The nominal and the minimum fuel-flow rate models can be combined into a single expression, 

 ( )nomfcr fCff min,max=  (3) 

The fraction of fuel-flow rate during the cruise phase is fcrC . Its numerical value is 1 during the other flight phases. 
Equations (1) through (3) show that to estimate fuel-flow rate for jets and turboprops, altitude, airspeed, thrust and 
the phase of flight (in cruise or not) needs to be known. Altitude is directly available from position reports; airspeed, 
thrust and the phase of flight have to be estimated. Airspeed can be estimated using the reported position and wind 
data. Equations of motion, which are discussed in the next section, have to be used for thrust estimation.  
 The amount of fuel consumed can be determined by integrating the fuel-flow rate as 

 !=
ft

f dtfm
0

 (4) 

Table 2. Minimum fuel-flow rate model coefficients. 
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Table 1. Nominal fuel-flow rate model coefficients. 
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Figure 2. Velocity triangle. 

where ft is the flight time. 

IV. Equations of Motion 
 The motion of aircraft, modeled as a point mass, is often described by the following three equations (see Ref. 

6): 

 gnV
hR )(

1

+
=!&  (5) 

 geV
hR !

"
cos)(

1

+
=&  (6) 

and 

 
h
Vh =&  (7) 

!  is the latitude, !  is the longitude, h  is the geometric altitude and R  is the mean radius of the Earth. gnV and 

geV  are the north and east components of the ground-relative aircraft velocity. 
h
V  is the climb or descent rate 

depending on whether it is positive or negative.  
 The horizontal velocity of the aircraft with respect to 
the ground is the resultant of the horizontal components 
of the airmass-relative velocity of the aircraft and the 
wind velocity. This relationship is shown in Fig. 2, where 

gV  and 
s

W are the magnitudes of the horizontal 

components of the ground-relative aircraft velocity and 
the wind velocity, and 

s
V  is the magnitude of the 

horizontal component of the airmass-relative aircraft 
velocity. 

g
!  is the heading angle of the ground-relative 

aircraft velocity with respect to the local north direction. 
!  and 

w
! are the heading angles of the airmass-relative 

aircraft velocity and ground-relative wind velocity also 
with respect to the local north direction. 

n
W , 

e
W  and 

h
W  as the north, east and up components of the wind velocity vector.  
  The magnitude of the airmass-relative acceleration resulting from the thrust, drag, lift and gravitational forces 
on the aircraft modeled as a point mass is 

  !!"!"!
#

sincossincoscossin
cos

hen WWWg
m

DT
V &&&& $$$$

$
=  (8) 

where V is airmass-relative speed (true airspeed), T  is thrust, D is drag, ! is angle-of-attack, m is mass, g is 
acceleration due to gravity and !  is flight path angle. Note that  

 !cosVV
s
=  (9) 

The kinetic equations for airmass-relative heading angle and flight path angle are 
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and 
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+
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µ  is bank angle and L  is lift. Equations (9), (10) and (11) are derived assuming flat Earth, constant gravitational 
acceleration and slowly changing mass. The altitude rate, Eq. (7), can be written in terms of the airspeed, flight path 
angle and the vertical component of the wind velocity as 

 
hh

WVVh +== !sin&  (12) 

Since wind varies both with position and time, the time derivative of the north, east and up components of the 
wind velocity can be determined as 

 handenih
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#
 (13) 

Observe that !& , !&  and h&  are defined in Eqs. (5) through (7).  
 Assuming the angle of attack to be zero in Eq. (8), 
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This expressions shows that thrust estimate depends on drag, mass, altitude rate, airspeed, rate of change of airspeed, 
wind terms and the airmass-relative heading angle. Dropping the wind terms, the following simplified expression is 
obtained: 

 
V

h
mgVmDT

&
& ++=  (15) 

It is now easy to see that the thrust required for balancing the right hand side of Eq. (15) during deceleration and 
descent can be less than the minimum thrust generated by the engines due to errors in the drag model and aircraft 
weight. A minimum thrust model is required in these instances. It can be constructed by equating Eq. (1) to Eq. (2) 
assuming the BADA fuel model to be consistent. Thus for jets and turboprops, the minimum thrust is obtained as, 

  
2

321

504

min

VfVff

hfff
T

!+

!!
=  (16) 

Note that Eq. (16) cannot be used for piston engines because nominal, minimum and cruise fuel-flow are specified 
to be a constants for piston engines in BADA. 
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V. Drag Model 
 Aerodynamic drag force is obtained as the product of the drag coefficient,

D
C , and the dynamic pressure as 

    SVCD
D

2

2

1
!=  (17) 

where ! is the density of air and S is the wing reference area. 
D
C  is given as the sum of the zero-lift drag 

coefficient, 
0D

C ,  and the induced drag coefficient, which is a quadratic function of the lift coefficient, 
L
C . Thus,   

    2

20 LDDD
CCCC +=  (18) 

0D
C and

2D
C are functions of aerodynamic configuration of the aircraft. BADA coefficients associated with the 

aerodynamic configuration are listed in Table 3. Traditionally drag coefficients are given as a function of Mach 
number and Reynolds number. BADA models these values as constants; it does not take Mach and Reynolds 
number effects into account. Note that the additional term 

LDGD
C !,0  represents drag rise due to deployment of the 

landing gear. During the approach and landing configurations, drag coefficients are adjusted for flap setting. One of 
difficulties of drag computation is determining the aerodynamic configuration. BADA specifies conditions based on 
stall speeds and maximum altitude thresholds that have to be met based on airspeed and altitude to determine the 
aerodynamic configuration. The only remaining parameter that needs to be specified for drag computation is 

L
C , 

which can be obtained using the definition of the lift force as       

 
SV

L
C
L 2

2

!
=  (19) 

The lift force needed is related to heading angle and flight path angle rates as shown in Eqs. (10) and (11), therefore 
assumptions have to be made about the trajectory being followed. This is discussed in the next section.  

VI. Trajectory Assumptions 
 To stay on course in a wind field, the aircraft has to crab such that the across-track component of the wind is 
cancelled. The airmass-relative heading angle needed to stay on the path specified by the course angle 

g
!  is 

obtained from the two relations based on Fig. 2: 

Table 3. Drag coefficients as a function of aerodynamic configuration. 
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 gnns VWV =+!cos  (20) 

and 

 gees VWV =+!sin  (21) 

as 

 
!
!

"

#

$
$

%

&

'

'
=

'

ngn

ege

WV

WV
1

tan(  (22) 

Resultant magnitude of the horizontal component of the airmass-relative aircraft velocity is 

 22 )()( egengns WVWVV !+!=  (23) 

Combining Eq. (23) with Eqs. (9) and (12), the following expression for true airspeed is obtained in terms of aircraft 
and wind velocity states: 

 222 )()()( hegengn WhWVWVV !+!+!= &  (24) 

Lift force, which is needed for 
L
C computation in Eq. (19), and the bank angle can now be computed using Eqs. 

(10) and (11) by prescribing !& and !& based on the aircraft trajectory. !&  is obtained by differentiating Eq. (22) as 

 
22 )()(

))(())((

egengn

ngnegeegengn

WVWV

WVWVWVWV

!+!

!!!!!
=

&&&&

&"  (25) 

Substituting !&  from Eq. (25) in Eq. (10) and using the relations in Eqs. (9), (20), (21) and (23), 

 gegnS VPVPLL &&
21

sin +==µ  (26) 

with 
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1

)()(
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P

!+!

!!
=  (27)  

and 

 
22

2

)()(

)(

egengn

ngn

WVWV

WVm
P

!+!

!
=  (28)   

To evaluate the other component of the lift force vector, the first step consists of differentiating Eq. (9) or Eq. (12) to 
get!& . Differentiating Eq. (12),  
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Substituting in Eq. (11) and using Eqs. (9), (12), (20) and (21),  

 gPhVPhVPhPVPVPLL gegngegnC 576543
cos +++++== &&&&&&&&µ  (30) 

with 

 
22222
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and 
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Lift force and the bank angle can be determined using Eq. (26) and (30); 

 22

CS
LLL +=  (36) 

 !!
"

#
$$
%

&
= '

C

S

L

L
1

tanµ  (37) 

L
C can now be obtained using Eq. (19) with lift force determined using Eq. (36). Drag force can be determined 
using Eqs. (18) and (17). Finally, thrust can be computed using Eq. (14). Note that the airspeed and airmass-relative 
acceleration in Eq. (14) can be replaced by ground-relative terms using Eqs. (20), (21), (23) and (24) as described in 
the Appendix. The fuel-flow rate is determined using Eq. (3) via Eqs. (1) and (2), and the fuel consumed is obtained 
using Eq. (4).   
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Figure 3. Altitude estimator. 

VII.  State Estimation 
 The procedure for estimating aircraft states, which are needed in the steps described in the previous sections is 
outlined in this section. Observations for estimation of aircraft states are given as a temporal sequence of latitudes, 
longitudes and altitudes that constitutes the four-dimensional trajectory of the aircraft. Given this sequence of 
observations, a state estimator such as a Kalman Filter can be designed using the state equations, Eqs. (5) – (7). 
Alternatively, filters and smoothers can be used for state estimation as described in Ref. 7.  
 Figure 3 shows a Proportional-Integral-Derivative (PID) controller based estimator design for the altitude 
channel. The objective is to estimate the altitude rate and vertical acceleration from altitude time history. Estimated 
values are denoted by the superscript “^.” The controller assumes a double integrator model of aircraft with altitude 
rate and altitude as measurements for feedback. The commanded acceleration results in altered altitude rate and 
altitude. The proportional gain, 

P
K , integral gain,  

I
K , and the derivative gain,  

D
K , of the controller can be 

chosen by placing the poles of the closed-loop system in the left half of the s-plane. Optimal gains can be chosen by 
equating the coefficients of the characteristic polynomial to the Butterworth or integral of time multiplied by the 
absolute value of error (ITAE) polynomials listed in Ref. 8.  
 A discrete version of the estimator in Fig. 3 is obtained by approximating the first and second derivatives of 
altitude using Taylor Series approximation about time-step k , which is separated from the next time-step 1+k  by 
time t! , as follows. 

 
t
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Thus, 
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tKtKtK
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DIP

!+!+!+

!+""!+++!+!
=+  (40) 

and 

 ))1(ˆ)1(()(ˆ)1(ˆ +!+"+=+ khkhtKkeke
I

 (41) 

 
Note that Eq. (41) implements the integral feedback term. 

Equation (40) is initialized with )1()1(ˆ hh = and 

)2()2(ˆ hh = ; it is used for time-steps 2>k . Once 
altitude is estimated using Eq. (40), the altitude rate and 
vertical acceleration can be estimated using Eqs. (38) and 
(39). One could estimate the altitude rate and acceleration 
by using the observed altitudes instead of the estimated 
altitudes. This however, would result in noisy estimates 
because noise in the altitude measurement would be 
amplified by the differencing process. Reducing noise in 
the altitude measurement by using the PID filter prior to 
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Figure 4. Actual latitude/longitude position history. 

taking differences results in smoother altitude rate and acceleration estimates.  
 The estimator implemented by Eqs. (38) through (41) is also used for the latitude and longitude channels with 
latitude and longitude measurements. These independent estimators provide estimates of angles, angular rates and 

angular accelerations: !̂ , !
&̂

, !
&&̂

, !̂ , !&̂  and !&&̂ . The horizontal components of the aircraft velocity vector can now 
be estimated using Eqs. (5) and (6). Finally, the acceleration terms can be estimated using derivatives of Eqs. (5) and 
(6) as follows:  

 !!
&&&&& ˆˆˆ)ˆ(ˆ hhRVgn ++=  (42) 

and 

 !"!""!" &&&&&&&
ˆˆˆcosˆˆˆsin)ˆ(ˆˆcos)ˆ(ˆ hhRhRVge ++#+=  (43) 

 With the aircraft states computed using the altitude and the latitude/longitude estimators, and the wind related 
estimates obtained using Eq. (13), lift, drag, thrust and fuel-flow rate can be computed. The north and east 
components of the wind velocity vector can be obtained as a function of time, latitude, longitude and altitude from 
the Rapid Update Cycle (RUC) data, which are provided by the National Oceanic and Atmospheric Administration 
(NOAA). The vertical wind velocity can be computed by post processing RUC data using the relation described on 
page 480 of Ref. 9. 

h
W  is small relative to 

n
W  and 

e
W ;  it can be assumed to be zero.  

VIII. Results 
This section is organized into five subsections. The first subsection on validation describes the flight test 

conditions and compares the estimated states with the actual states from the Flight Data Recorder (FDR). Fuel 
estimation accuracy is examined for the climb, cruise and descent phases of the flight in the second subsection. The 
next subsection discusses model simplification and its effect on fuel usage estimate. A procedure for takeoff weight 
estimation that starts by setting the takeoff weight to the maximum zero-fuel weight and then iteratively improves 
the estimate by adding reserve fuel and fuel consumed is discussed in the fourth subsection. Suitability of using 
radar-based position data for fuel estimation is explored in the fifth subsection.       

Aircraft State Estimation Validation  
To validate the fuel estimation procedure described in Fig. 1, FDR data from an actual flight of the Federal 

Aviation Administration (FAA) owned Bombardier Global 5000 aircraft from Atlantic City International airport 
(ACY) in New Jersey to Los Angeles International airport (LAX) in California on 4/17/2009 were used. These data 
were sampled at 4 second intervals. The dry weight of the 
aircraft was 23,509 kg (51,828 lb) and the initial fuel 
weight was 15,853 kg (34,950 lb). The total amount of 
fuel burnt during the flight test was 8,097 kg (17,850 lb).  
 The FDR provided latitude/longitude position history 
is shown in Fig. 4 and the altitude time history is shown 
in Fig. 5. The temporal sequence of latitude, longitude 
and altitude derived from the FDR data were input to the 
latitude, longitude and altitude estimators, that were 
discussed in the previous section, to estimate latitude, 
longitude and altitude rates. Components of the ground-
relative aircraft velocity computed via Eqs. (5) and (6) 
with these rates were then used to estimate the 
groundspeed. FDR reported groundspeed is shown in Fig. 
6 and the error of the estimated groundspeed with respect 
to it is shown as a function of flight time in Fig. 7. 
Groundspeed estimation error was found to have a mean 
of -0.5 knots, standard deviation of 3.6 knots and 
extremal values of -62.7 knots and 36.1 knots. These 
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Figure 5. Actual altitude time history. 

 
 

Figure 7. Groundspeed estimation error time history. 

 
 

Figure 6. FDR reported groundspeed time history. 

 
 

Figure 8. Time histories of estimated calibrated 
airspeed and indicated airspeed from FDR. 

large errors occurred at takeoff and just after landing due 
to sudden change in velocity. 
 To compute the airmass-relative aircraft velocity 
terms and the wind terms needed for lift, drag, thrust and 
fuel-flow computations, horizontal components of the 
wind velocity were obtained from the 4/17/2009 hourly 
RUC data. Vertical component of the wind was assumed 
to be zero. The spatial and temporal partial derivatives of 
the ground-relative wind velocity are computed using 
finite-differences (see Eq. 38 for example) along the FDR 
reported trajectory. Latitude, longitude and altitude rates 
obtained via the state estimators are used with the partial 
derivatives to obtain the total derivatives via Eq. (13). 
Horizontal components of wind velocity and aircraft state 
estimates were used to estimate true airspeed using Eq. 
(24). This true airspeed was converted to calibrated 
airspeed using the standard atmosphere model. Pressure 
and temperature values derived from RUC data can also 
be used for this conversion. Figure 8 shows the time 
histories of the estimated calibrated airspeed and the 
indicated airspeed from the FDR. Figure 9 shows the 
difference between the estimated calibrated airspeed and 
the indicated airspeed derived from the FDR. Mean and 
standard deviation of the errors are -3.3 knots and 8.6 
knots, and the extremal values are -64.2 knots and 32.0 
knots. As in Fig. 7, large errors occurred at takeoff and 
upon landing. Results presented in the figures above 
illustrate aircraft and wind state estimation accuracy. The 
next set of figures demonstrates the accuracy of fuel burn 
estimation. 
 Estimated aircraft states, wind states and weight were 
used to estimate lift using Eq. (36). Takeoff weight of the 
aircraft was specified to be 39,362 kg (86,778 lb), which 
was the actual takeoff weight of the FAA aircraft 
employed for the flight test. Subsequently, the estimated 
amount of fuel burnt was subtracted from the takeoff 
weight to estimate weight as a function of time. 
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Figure 9. Estimated calibrated airspeed error time 
history. 

 

 
 

Figure 11. Estimated and FDR fuel-flow rate during 
cruise. 

 

 
 

Figure 10. Estimated and FDR fuel-flow rate during 
climb. 

Estimated lift was then used in Eq. (19) to estimate the 
coefficient of lift. Reference area value of 94.9 m2 based 
on Ref. 10 and density of air based on standard 
atmosphere model were used in Eq. (19). The density of 
air can be computed from pressure and temperature 
derived from RUC data. 

D
C  was then calculated using 

Eq. (18). Since BADA 3.7 does not have a native model 
for Global 5000, the Bombardier RJ-900 Regional Jet 
model drag coefficients and fuel-flow coefficients were 
used. This same model was also used in Ref. 4. 
Unfortunately, the BADA RJ-900 model only provides 

0D
C   and 

2D
C values for the cruise condition. Values for 

takeoff, initial climb, approach and landing 
configurations were determined by scaling the average 
values with the cruise values, where the average values 
were obtained by analyzing the 

0D
C   and 

2D
C values of 

the 69 jet aircraft models in BADA 3.7 for the different configurations.  Drag estimated using Eq. (17) was then 
used with the estimated aircraft states, wind states and weight to estimate thrust using Eqs. (14) and (16). V& was set 
to zero for cruise. Thrust estimates were found to be noisy, so they were smoothed using the procedure described in 
Section VII. The smoothed estimates were then used in Eq. (1) to estimate the fuel-flow rate.  

Fuel Estimation Validation 
Estimated fuel-flow rate and fuel-flow rate from the FDR during the climb phase are shown in Fig. 10. Notice 

the low fuel-flow rate in Fig. 10 and the flat altitude in Fig. 5 for the first 10 minutes; they correspond to taxi on the 
ground. During the cruise phase are shown in Fig. 11. Fuel-flow rates for the descent phase are given in Fig. 12. 
Observe the big spike in fuel-flow rate from FDR after the 312 minute mark; it is most likely due to increased thrust 

accompanied with thrust reverser deployment for speed reduction to taxi speed. Based on this observation, the 
negative estimated thrust is considered to be positive thrust with thrust reverser deployed after landing. The resulting 
fuel-flow rate value was estimated to be 0.38 kg/s compared with 0.72 kg/s reported in FDR data. For reference, 
aircraft altitude is about 14,770 feet at the 301 minute mark, 8,000 feet at the 305 minute mark and zero at the 312 
minute mark. The aircraft needs to be below 8,000 feet for approach configuration and at or below 3,000 feet for 
landing configuration. As expected, thrust and fuel-flow rate were found to be strongly correlated. 
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Figure 13. Estimated and FDR reported fuel 
consumption time history. 

 

 
 

Figure 12. Estimated and FDR fuel-flow rate during 
descent. 

 
 

Figure 14. Percentage error with respect to actual 
fuel usage. 

 Finally, Fig. 13 shows the estimate of the amount of 
fuel consumed and the FDR reported values as a function 
of time. It is difficult to assess the error from this figure 
therefore Fig. 14 is provided to show the relative error. 
Relative error drops below 20% seven minutes into flight 
when the aircraft is at about 11,000 feet altitude. Mean 
and standard deviation of the fuel burn error were found 
to be -1.4% and 10.6%. Extremal values were determined 
to be -79.4% and 36.1%. These values occur prior to 
takeoff. The total amount of fuel consumed during the 
flight was estimated to be 8,099 kg, which is only two 
kilograms more than the FDR value. To get this close 
match, the Bombardier RJ-900 Regional Jet model fuel-
flow coefficients were multiplied by a factor of 
0.853.This value was obtained by trial and error. The fuel 
consumed estimate is lowered to 8,072 kg with a factor 
0.85. The error with respect to the FDR value of 25 kg is 

reasonable based on the observed uncertainty of 50 pounds (23 kg) in the FDR fuel consumed data. The other 
meaningful measure is the mean of the relative error shown in Fig. 14. Considering relative error beyond 100 
minutes, the mean value is 0.86%; thus, it is fair to assume that the error in the estimated amount of fuel consumed 
is within 1% of the actual amount of fuel consumed in the flight test. This result validates the fuel estimation 
procedure described in the paper. 

Model Simplification 
To determine if the simpler model used in Ref. 4 is adequate for fuel estimation, lift was set equal to weight in 

all phases of flight and thrust was modeled using Eqs. (15) and (16). This means that the wind terms in Eq. (14) 
were dropped. As in the complete model, described in the previous section,  V& was set to zero for cruise. Other than 
replacing the lift and thrust models with simpler models, all the steps described for obtaining the results in the 
previous section were followed. Results obtained on the flight test data matched the results in the previous section. 
Differences between these two sets of results were found to be negligible. Mean and the standard deviation of the 
fuel burn error were found to be -1.35% and 10.65% compared to -1.42% and 10.62% for the data in Fig. 14. Based 
on these results, the simpler lift and thrust models are adequate for fuel burn estimation. 

Takeoff Weight Estimation and Uncertainty 
The results described in the previous section were based on the actual takeoff weight of the test aircraft. In most 

instances, the actual takeoff weight of the aircraft will not be known therefore, a procedure is needed for estimating 
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Figure 15. Convergence of takeoff weight estimates. 

the takeoff weight of the aircraft. One possibility is to use the procedure described in Ref. 3. This technique uses the 
constant-altitude range equation and aircraft design principles for estimating the takeoff weight. The method also 
needs distance to the top-of-climb point and the weight at this location for given cruise-altitudes and cruise-speeds. 
This information is derived by simulating the climb trajectory according to BADA aircraft performance and 
procedure models. The second possibility is to assume an initial weight without fuel and then estimate the amount of 
fuel needed for flying from the airport of origin to the airport of destination. Since the amount of fuel needed has to 
be carried onboard the aircraft, a bit more fuel is consumed for carrying this additional weight. A few iterations of 
adding the fuel needed to the takeoff weight and computing the fuel needed for the flight should yield a good 
estimate of the takeoff weight.  This approach has been employed for generating the results discussed below. The 
main benefit is less dependence on BADA and more reliance on actual trajectory data. 

To start the iterations, the takeoff weight was set to the maximum zero-fuel weight of 25,401 kg (56,000 lb) 
based on manufacturer data (see Ref. 10). Maximum zero-fuel weight includes the structural weight of the aircraft, 
crew, maximum payload and everything other than the fuel. The zero-fuel weight can be adjusted to a lower value 
based on assumed load-factor. For example, a load-factor of 0.8 means that payload is assumed to be 80% of the 
maximum payload. Although the actual zero-fuel weight of the test aircraft 23,509 kg (51,828 lb) was known, it was 
not used because this would not be known for a typical flight. The assumption is that the aircraft was carrying the 
full payload. One would need to reduce the payload if the takeoff weight exceeds the maximum takeoff weight or 
when the destination cannot be reached with maximum fuel. A flowchart in Ref. 3 describes these conditions. Next, 
the simplified lift and thrust models of the previous section were used with the fuel estimation procedure to 
determine the amount of fuel needed for the flight and the 
average fuel burn rate during cruise. The fuel needed was 
6,777 kg (14,941 lb) and the average fuel burn rate was 17.8 
kg/min (39.2 lb/min). The average burn rate was used to 
determine the amount of reserve fuel. Federal Aviation 
Regulations require domestic flights conducted under 
Instrument Flight Rules to have enough fuel to fly to the first 
airport of intended landing, then fly to an alternative airport 
(if conditions require an alternative airport), then for 45 
minutes thereafter at normal cruising speed. The weight of 
the reserve fuel was determined to be 1,599 kg (3,526 lb) 
assuming 90 minutes of additional flight time. The initial 
takeoff weight of 25,401 kg was augmented with 6,777 kg of 
fuel needed for the flight and 1,599 kg of reserve fuel for the 
next iteration. This process was repeated for the subsequent 
iterations. Takeoff weight is shown as a function of 
iterations in Fig. 15. Observe that there is very little change 
in the takeoff weight estimate after the fourth iteration. After 
10 iterations, takeoff weight estimated value is 34,812 kg (76,748 lb). The actual takeoff weight of the Global 5000 
was 39,362 kg (86,778 lb), which is 11.6% more than the estimated takeoff weight. The main reason for the 
difference is that 7,756 kg (17,099 lb) of extra fuel was carried during the flight test. This example shows that 
accurate takeoff weight estimation is difficult. If the aircraft has greater range capability, it can carry more fuel than 
that required for the flight. Airlines sometime ferry fuel depending on where fuel is cheapest to purchase. Since the 
amount of fuel burned is a function of the takeoff weight, any uncertainty in takeoff weight translates into 
uncertainty in the estimate of fuel burned. To explore this aspect a bit more, the fuel estimation procedure was 
repeated with maximum takeoff weight of 41,957 kg (92,500 lb) specified by the manufacturer (see Ref. 10). The 
results are summarized in Table 4.    

The first row of Table 4 shows results for takeoff weight estimated using the iterative procedure. The second row 
shows results obtained using the actual flight test weight. The third row shows results with maximum takeoff 
weight. Second column shows the difference of the takeoff weight with respect to the actual takeoff weight. The 
third column shows a single value derived from flight test data. Estimated fuel consumption corresponding to the 
takeoff weights is shown in column four. Column five lists the fuel consumption error with respect to the measured 
fuel consumption. The second and the fifth columns show that takeoff weight errors translate to fuel consumption 
errors. The smallest and the largest fuel consumption values in column four represent fuel estimation uncertainty 
bounds. Analysis to this sort can be beneficial in determining the bounds of environmental impact related to fuel 
consumption.     
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Fuel Estimation Using ASDI Data 
The ultimate objective of this paper is to enable fuel estimation using data from air traffic data sources. The 

primary sources of trajectory data are the Host Computers in the Air Route Traffic Control Centers (ARTCC). These 
data are provided at a 12-second interval. Trajectory data from Host Computers are consolidated and provided at a 
one-minute interval as Airline Situation Display to Industry (ASDI) data. Fuel estimation results obtained with the 
trajectory of the flight test aircraft derived from 4/17/2009 ASDI data are discussed in this section. 

Track data corresponding to the FAA’s Global 5000 aircraft tail number were extracted and compared with 
position data recorded by the FDR. The first ASDI track data was 3.9 nautical-miles away from the airport, based on 
the first FDR position data, and at an altitude of 3,100 feet. Similarly, the last ASDI track data was 3.8 nautical-
miles away from the airport, based on the last FDR position data, and at an altitude of 793 feet. In addition, the 
following ASDI position data quality issues were also identified. While the mean, median and mode temporal 
separation between two successive track positions were 60 seconds, the maximum and minimum separation were 
184 seconds and 30 seconds. The standard deviation was 8 seconds. These observations confirm that ASDI and Host 
Computer track data are not totally synchronous and periodically suffer from data drops. To determine the accuracy 
of reported position, FDR position data were first interpolated using spline interpolation and sub-sampled at the 
ASDI track times. Great circle distances between the resulting FDR position data and the corresponding ASDI 
position data were then determined. The mean and the standard deviation of the errors were determined to be 1.23 
and 0.62 nautical-miles. Minimum and maximum were 0.13 and 3.05 nautical-miles. The main point is that position 
data acquired by radar is affected by bias, noise and quantization errors.  

To deal with data quality issues, outliers were removed from ASDI position data; then data were interpolated 
with a spline fit and sub-sampled at a 60-second interval. The resulting track data were then input to the fuel 
estimation procedure. The initial weight was set to the actual takeoff weight of 39,362 kg (86,778 lb) minus 408 kg 
(900 lb), where 408 kg of fuel was burnt to reach the altitude of 3,076 feet based on FDR data. There is a difference 
of 24 feet in the FDR and ASDI reported altitudes at the first position in ASDI data. The difference in the two 
altitudes at the last location is 245 feet with FDR altitude of 548 feet and ASDI altitude of 793 feet. The amount of 
fuel consumed was estimated to be 7,741 kg (17,066 lb) compared to the actual fuel consumption of 7,688 kg 
(16,949 lb). The estimation error is 0.7% with respect to the FDR reported fuel consumption. Next, the iterative 
weight estimation procedure was initiated with the maximum zero-fuel weight of 25,401 kg (56,000 lb). After 10 
iterations the initial weight of aircraft was estimated to be 34,616 kg (76,315 lb) and the fuel consumed was 
estimated to be 7,276 kg (16,041 lb). This represents an error of -5.4% with respect to the FDR value of 7,688 kg. 
Although, the error is more, the iterative weight computation procedure is preferred because initial weight data will 
not be available as it was for the flight test. The other aspect is that if Host Computer data are used, only a part of the 
trajectory will be available. Starting with zero-fuel weight at the starting location accounts for fuel burned to fly up 
to that location to some extent. Estimation results can be expected to improve with Host Computer data because of 
faster update interval of 12-seconds.       

IX. Conclusions 
This paper described a procedure for estimating fuel consumption based on actual trajectory, and drag and fuel-

flow models. The method consists of estimating aircraft and wind states and using them to determine lift, drag, 
thrust and fuel-flow. Fuel consumption estimates generated for a Bombardier Global 5000 flight from Atlantic City 
to Los Angeles were compared with the Flight Data Recorder values, obtained during a flight test conducted by the 
Federal Aviation Administration, to validate the method. Results show that fuel usage can be estimated within 1% of 

Table 4. Takeoff weight and fuel consumption uncertainty. 
 

Takeoff 
Weight 

% Weight 
Error 

Measured Fuel 
Consumption 

Estimated Fuel 
Consumption 

% Error 

34,812 kg -11.6  7,610 kg -6.01 

39,362 kg 0 8,097 kg 8,101 kg 0.05 

41,957 kg 6.6  8,407 kg 3.83 
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the actual value when the takeoff weight is known. The procedure was simplified by setting lift equal to weight and 
by removing the wind terms from thrust. This simplification did not degrade fuel estimation accuracy. A procedure 
for estimating takeoff weight was then introduced. Starting with an initial estimate of takeoff weight, this procedure 
used reserve fuel requirements to iteratively improve the takeoff weight and fuel estimates. The method was found 
to converge within five iterations. It was shown that fuel usage uncertainty bounds can be determined by varying the 
takeoff weight. Finally, the adequacy of using trajectory data obtained by air traffic control systems was examined. 
Trajectory data for the Atlantic City to Los Angeles flight obtained from Airline Situation Display to Industry data 
were used for estimating fuel usage. Although these data suffered from bias, noise, asynchronous update, and data 
drops, it was possible to condition the data for obtaining reasonable fuel estimates. Fuel usage could be estimated 
within 5.4% of the actual value using Airline Situation Display to Industry data with simplified models and the 
iterative takeoff weight estimation method.  
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Appendix 

The airmass-relative terms in the thrust equation,  
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can be replaced by ground-relative terms as follows. Airmass-relative acceleration obtained by differentiating Eq. 
(24) is 

 
222 )()()(

))(())(())((

hegengn

hhegeegengnngn

WhWVWV

WhWhWVWVWVWV
V

!+!+!

!!+!!+!!
=

&

&&&&&&&&
&  (A-2) 

The airmass-relative heading terms can be replaced using Eqs. (20), (21) and (23) as follows. 
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V is given in terms of ground-relative quantities in Eq. (24). Thrust can therefore be computed in terms of ground-
relative terms. 
 Units of BADA fuel-flow coefficients are given in Table 5.  

 
Fuel-flow rate coefficients for a jet, a turboprop and piston engine types are given in Table 6.  
 

 
 
 
 
 
 
 
 
 
 

Table 6. Fuel-flow rate coefficients for a jet, a turboprop and a piston aircraft. 
 

Aircraft Type Manufacturer 1fC  
2fC  

3fC  
4fC  fcrC  

CRJ-900 Bombardier 0.61472 369.75 8.2151 355,910 1 

EMB-120 
Brasilia Embraer 4.5662 664.15 6.5559 43,048 1 

PA-28-161 
Cherokee Piper 0.44515 -- 0.30872 -- 0.87274 

 

Table 5. Units of BADA fuel-flow rate coefficients. 
 

Engine Type 1fC  
2fC  

3fC  
4fC  fcrC  

Jet kg/(min*kN) knots kg/min feet dimensionless 

Turboprop kg/(min*kN*knot) knots kg/min feet dimensionless 

Piston kg/min -- kg/min -- dimensionless 
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