

Surface profile correction of replicated X-ray optics through differential deposition

Kiranmayee Kilaru¹, Carolyn Atkins², Brian D. Ramsey³, Mikhail V. Gubarev³,

Jessica A. Gaskin³, Steve O'Dell³, William Zhang⁴

¹NASA Postdoctoral Program Associate
 ²Chandra Postdoctoral Program Associate
 ³NASA Marshall Space Flight Center
 ⁴NASA Goddard Space Flight Center

Replicated X-ray optic projects at MSFC Astronomical applications HERO FOXSI

ART

Non-astronomical applications

Medical imaging

shadow of the beam stop

Neutron imaging

focal spot

shadow of the mirrors

Replication process

Mandrel - machining Al bar, electroless Nickel coating, diamond turning and polishing

Electroform Ni/Co shell onto mandrel

Separate optic from mandrel in cold water bath

Replicated X-ray shells

Figure deviations

0.02

0 mm 0.04

0.06

Parabola - hyperbola geometry imaging

distortion

Sensitivity of figure variation

Minimizing height variation \rightarrow Improves the imaging quality

Addressing profile deviations through differential deposition

Process sequence - differential deposition

NASA

Theoretical performance improvement

Depositions

Coatings on glass samples

Mask configurations

- •For larger-size astronomical Xray shells
- Preliminary experiments
 Optimize mask design
 Gas flow rate
 RF power
 Gas pressure
 Diameter of target rod
 Coatings on glass samples
 Deposition rate
 - •Coating quality
 - •Sputtered beam profile

Possible practical limitations

Correction stage	Average deposition amplitude (nm)	Slit-size (mm)	Metrology uncertainty (nm)	Angular resolution (arc secs)
1	300	5	± 0	3.6
			± 10 🥆	3.6
			± 50	7.3
2	40	2	± 0	0.6
			± 1	1
			± 5 <	2
			± 10	3.5
3	4	1	± 0	0.2
			± 0.5	0.2
			± 1	0.5
			± 2	0.8

•Simulations performed on X-ray shell of8 arc sec simulated HPD

•Potential for ~arc-second-level resolution - with MSFC's metrology equipment

•Sub-arc sec resolution can be achieved with the state-of-art metrology equipment

Application of differential deposition

Differential deposition Applicable to Any reflecting configuration Cylindrical full shell optics Planar geometry segmented optics to correct Low and mid order axial figure errors Azimuthal axial slope variation Profile generation on conical approximated surfaces Shell edge effects Mounting effects

Differential deposition conclusions

- Potentiality for significant improvement in angular resolution of the Xray mirrors
- Concept proven on smaller-size medical imaging optics
- Cost-and time-efficient method of improving the imaging quality of the optics
- Profile and mounting error correction
- Can be applied to different kinds of X-ray optics full-shell as well as segmented optics