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1.0 Introduction

The Commercial Modular Aero-Propulsion System Simulation (C-MAPSS) is a nonlinear, dynamic,
component-level model (CLM) of a commercial, high-bypass, dual-spool turbofan engine. The overall
simulation is implemented in the MATLAB/Simulink environment, thus providing flexible interaction
with the software user. One can take full advantage of the features included in C-MAPSS through a
straightforward graphical user interface (GUI). C-MAPSS has built-in capabilities (e.g., Newton-Raphson
solver for calculation of steady-state operating points, generation of linear engine models, and different
engine control system configurations) that are directly accessible through the top-level GUI. Furthermore,
advanced users can readily modify and customize the model to their specific requirements using the
graphical syntax of the Simulink environment.

C-MAPSS is a unique addition to the resources of the general aeronautical research community
because it is a realistic, non-proprietary simulation of both the engine and its control system. The CLM
simulates a modern, commercial turbofan engine, and is presented in a user-friendly, visually oriented
manner. Moreover, the control system is representative of the control architecture in a Full Authority
Digital Engine Control (FADEC) system used with many present-day aircraft engines.

This guide is written for Version 2 of the C-MAPSS software, which has a number of important
differences from Version 1. The original version of C-MAPSS is described in Reference 1. As explained
in Reference 2, Version 2 includes the addition of:

Variable stator vanes (VSV) in high pressure compressor (HPC)
Variable bleed valve (VBV) for controlling inter-compressor bleed flow
Actuator dynamics for fuel-metering valve (FMV), VSV, and VBV
Sensor dynamics

Combustion delay

Reynolds Number effects in HPC
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e Controllers and limit regulators with second-order incremental portions
Extensively revised GUI with more intuitive and compact presentation of program features and model
parameters

The aim of this user’s guide is to familiarize the new user with the C-MAPSS software through

descriptive instructions and examples. It is also meant to serve as a reference manual for the more
seasoned user for new features and/or definitions and descriptions of model variables.

Nomenclature

Alt Altitude

CLM Component Level Model

C-MAPSS Commercial Modular Aero-Propulsion System Simulation
degF Degrees Fahrenheit

DTamb Deviation from standard temperature at given altitude
DVBV Deviation from variable bleed valve schedule
DVSV Deviation from variable stator vane schedule
EPR Engine Pressure Ratio

error_tol Error tolerance for the iterative solver
FADEC Full Authority Digital Engine Control

Fn Net thrust

GUI Graphical User Interface

HPC High Pressure Compressor

HPT High Pressure Turbine

LEM Linear Engine Model

LPC Low Pressure Compressor

LPT Low Pressure Turbine

max_iter Maximum number of iterations allowed per time step for the iterative solver
MN Mach Number

Nc Core speed

Nc_dot Core acceleration

Nf Fan Speed

PCNfR Percent corrected fan speed

Phi Ratio of fuel flow to Ps30 (pph/psi)

pph Pound-mass per hour

pps Pound-mass per second

PR Pressure Ratio

Ps30 HPC outlet static pressure

RMS Root Mean Square

T48 HPT outlet total temperature

TRA Throttle Resolver Angle

VBV Variable Bleed Valve

VSV Variable Stator Vanes

Wf Fuel flow (pph)

NASA/TM—2012-217432 2



2.0 Engine Model Description

This section describes the engine and control system and their implementation in C-MAPSS. The
C-MAPSS engine is a 90,000-1b thrust class turbofan engine with a dual-spool configuration and a bypass
ratio of approximately 8.4. Figure 1 shows a schematic diagram of the upper half of the engine, which
consists of an inlet, bypass nozzle, fan, low pressure compressor (LPC), high pressure compressor (HPC),
combustor, high pressure turbine (HPT), low pressure turbine (LPT), and core nozzle. The HPT powers
the HPC, and the LPT drives both the LPC and fan. The actuators that are modeled consist of the fuel
metering valve, which controls the fuel flow into the combustor, variable stator vanes (VSV) within the
HPC, and a variable bleed valve (VBV) at the outlet of the LPC.

The engine is modeled as a nonlinear dynamical system with two state variables: fan speed and core
speed. The engine model is component-level; each engine component is modeled independently, with the
overall simulation connecting them together. Component-level performance is calculated using
thermodynamic relationships and data interpolation from the fan, compressor, and turbine maps. The
system inputs are fuel flow, deviation from scheduled VSV angle (DVSV), deviation from scheduled
VBV position (DVBV), and a set of 13 health parameters that simulate engine degradation. The health
parameters (listed in Table 2 in the Appendix) consist of flow, efficiency, and pressure-ratio modifiers for
the fan, LPC, and HPC, and flow and efficiency modifiers for the HPT and LPT. The model outputs are
listed in Table 3 and Table 4 in the Appendix, though any simulation variable is accessible with minor
modifications to the Simulink model. At each simulation time step, the engine model is iterated until the
flow rate into and out of each rotating component is consistent. The iterative solver is similar to that in C-
MAPSS40k, a 40,000-1b thrust class turbofan engine simulation (Ref. 3), and adapted for the C-MAPSS
engine model.

To control the engine, the three input parameters—fuel flow, DVSV, and DVBV—must be specified.
These values can be directly supplied to the engine, in which case the engine is said to be in “open-loop”
operation. Alternatively, C-MAPSS provides a variety of control systems to utilize with the engine. In
this more conventional “closed-loop” scenario, the engine control system calculates the appropriate fuel
flow command from a user-specified throttle input. VSV and VBV actuator positions are generally
scheduled based on current flight and engine conditions, though they may be offset using DVSV and
DVBYV inputs. The default engine control system is shown in Figure 2. This configuration represents the
most complete control architecture C-MAPSS offers. The Power management block converts throttle
resolver angle (TRA, in degrees) to desired fan speed, Nf. The scheduled Nf controller block
then calculates the change in fuel flow (Wf) necessary to achieve the desired fan speed by comparing it
with measured fan speed. The controller gains are scheduled on flight conditions to ensure operation
across a wide flight envelope. A set of limit regulators (located within the High-Timit regulators
and Low-limit regulators blocks) protects against combustor blowout, mechanical failure from

Inlet

Core Shaft

10 20 21 13 24 30 41 48 50 70 80

Figure 1.—Schematic diagram showing the components and station numbers of the C-MAPSS engine.

NASA/TM—2012-217432 3



T45 sens

Ta9_sens
P=30 zenz  hilimit regs [—

MC 22N

Upper Limit

High-limit regulators

FONR s lPnR i clot in VA ciot out |n
[Fzsens >z ot » ot
; Wi emd (pph)
P f_ert Accel/ Decel | Lovver Limit
scheduled [— lm'—bk:
NF controller T » ata
J Integrator with
=30 s — -
_sens P=30 zeng lows limit ws altitude adjustable limits
lo-limit regs

(T —w{TRa ot NC sene
TRA

Lowe-limit regulatars
Fower management

Figure 2.—Default C-MAPSS engine control system.

excessive core speed, combustor failure due to high pressure, and turbine damage due to prolonged high
temperature exposure. There are also limits on spool acceleration and deceleration (the Accel/Decel
block), which protect the engine against operability issues such as compressor stall by preventing the fuel
flow from increasing or decreasing too rapidly. Other configurations available (see Section 4.1) are
essentially control systems with different subsets of the components shown in Figure 2. Details of the
C-MAPSS engine control design are available in Reference 2.

3.0 Simulation Setup

Once properly set up, C-MAPSS grants a large amount of flexibility in modeling the engine responses
to various flight conditions, input profiles, and health and degradation scenarios. This section provides
detailed instructions for setting up the software and initializing a session and summarizes the operations
available using the GUI.

3.1 Initialization

When initially downloaded from the NASA Glenn Research Center Software Catalog,* the C-MAPSS
software is compacted as a single .zip file. Uncompressing this file will yield a top-level folder containing
all the files and the directory structure necessary to run the software. This folder, henceforth referred to as
the root directory, is portable and can be placed in any directory, provided that there are no blank spaces
in the name of the root directory or the path to it.

Figure 3 shows the contents and structure of the root directory. On a cautionary note, it is not
advisable to place .MAT files in the root directory; their contents may be unintentionally loaded by
C-MAPSS into the MATLAB workspace during the course of running the simulation. The names of most
folders in the root directory are representative of their content. For instance, the HPC directory contains
performance tables and scalars for the high pressure compressor (HPC). The Simulink model files and
various built-in model analysis tools are stored in CLsim. CLM consists of plotting routines and pre-saved
flight conditions, flight profiles, linear models, and regulators (described in detail in subsequent sections).
The DLL directory consists of compiled and source code for various engine components. The
aerothermodynamic calculations for the engine components are written in C. Instructions for recompiling
the C code are contained within each source file. (Note: C-MAPSS has been tested and shown to function
properly on MATLAB version 2010a with Simulink and Control System Toolbox; the source files have
been compiled for a computer system running the Windows operating system).

! http://sr.grc.nasa.gov/
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Figure 3.—C-MAPSS root directory structure.

3.2  Top-Level Graphical User Interface

The C-MAPSS graphical user interface (GUI) facilitates the primary interactions between the user
and the software. To open the main GUI window, initiate MATLAB and ensure that the Current Directory
is set as the C-MAWPSS root directory. Then, execute setup_everything.m. This will initialize the
simulation in the MATLAB workspace and open up the main GUI, which will be clean of any simulation
parameters (Figure 4). The top-level GUI can be resized, if desired, with its components remaining
generally proportional to the overall window size. However, certain components will overlap if the
window is made too small.

The main menu options are located under the title bar of the top-level GUI. They are, from left to
right:

o Model/Controller Selection: select model (open-loop, closed-loop) and controller type (if
applicable)

e Flight Condition: load, create, and/or save flight conditions

e Input Profile: load, create, and/or save input profiles

e Linear Model: load, create, and/or save linear engine models (LEM); analyze LEM; compare
LEM and CLM responses

e Plot: generate a variety of plots after running the simulation

o Help: access quick help with this GUI and information about C-MAPSS

While setting up the simulation, the main GUI will update with the latest model status and summary.
Once the simulation is sufficiently defined, pressing the Run Simulation button runs the model. Pop-
up windows will notify the user of any errors in the setup process.” The Restart button clears the
MATLAB workspace and reloads the main GUI. The Close button will exit the program.

2 Alternatively, clicking the play button (*) on the Simulink window will also run the simulation. However, this
method will bypass the GUI’s error-checking process.
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Figure 4.—Top-level GUI for C-MAPSS, after running setup_everything.

4.0 Running a Simulation
4.1  Model Selection

The first step when using C-MAPSS is to decide which Simulink model to use. Select the desired
model using the Model/Control ler Selection menu option from the main GUI. Several
different model files are included with C-MAPSS. Each model consists of a distinct control system
configuration (the engine components are identical). Table 1 lists the available model files and their
associated control system architecture. To select a user-defined model file not included in the list, select
Custom Model from the dropdown menu. The model selected by default is CM2_SADL_Ncd_IS. The
Nonlinear Model panel in the main GUI window will display the name of the currently selected
model file. Checking the show Simulink model box will open the model file. The following
describes the control configurations of the different model files.

The nomenclature for the models listed in Table 1, though not rigorous, generally indicates which
control system components are present:

e S: gain-scheduled fan speed controller
AD: acceleration/deceleration limiters

o L: limit regulators for burner static pressure (Ps30), high pressure turbine exit total temperature (T48),
and core speed (Nc)
Ncd: limit regulator for core acceleration

e OL: open-loop, i.e., no control system

NASA/TM—2012-217432 6



The default model, CM2_SADL_Ncd__1S, is the most complete configuration since it contains all the
available control system components. The model includes the full control system, which consists of a
gain-scheduled fan speed controller and the complete suite of protection logic. CM2_SAD__1S consists of
the gain-scheduled fan speed controller and acceleration/deceleration limiters, but no limit regulators.
CM2_OL__ IS is an open-loop engine model. Since the model does not have a control system to calculate
fuel flow from throttle resolver angle, fuel flow must be provided directly (see Section 4.3). Finally,
CM2_switched_ctrl 1S isa “switched” control system configuration. This model contains flags
that activate or deactivate various control system components. The user can choose to: (1) disable the
limit regulators and acceleration/deceleration limiters, (2) select among the gain-scheduled fan speed
controller, single-gain controller, or no controller. The available configurations of
CM2_switched_ctrl_IS are shown in Table 1. Note that the no controller option essentially
duplicates the performance of the open-loop engine model, CM2_OL __1S.

TABLE 1.—SUMMARY OF SIMULINK MODELS AND AVAILABLE CONFIGURATIONS

Model name Nf controller Ps30/T48/Nc Nc_dot limit Accel/Decel
limit regulators regulator limiter
CM2_OL_1S No (open-loop) No No No
CM2_SAD_1IS Scheduled No No Yes

CM2_SADL_Ncd_1S

(default selection) Scheduled Yes Yes Yes
Scheduled Yes No Yes

CM2_switched_ctrl_IS Scheduled No No No
(4 available configurations) Point gains No No No
No (open-loop) No No No

4.2 Flight Condition

Once the desired model file has been selected, the user must specify the initial flight condition for the
simulation—power setting (TRA or W), altitude, Mach number, standard ambient temperature offset
(DTamb)—by loading an existing flight condition file or creating a new one. The design ranges for these
parameters are:

TRA: 0° to 100°

Altitude: 0 to 40,000 ft
Mach number: 0 to 0.9
DTamb: —-60 to 103 °F

To load a flight condition file, select Load from the Flight Condition menu option located at
the top of the main GUI window. A new window will open (Figure 5), displaying a list of available flight
conditions along with a concise description for each (filename, TRA, altitude, Mach number, DTamb).
Note that the list is only representative of the flight condition files in the directory, CLM\FC_Files.
This directory contains 16 preset flight conditions: FCO1.mat through FC16 . mat. User-created flight
conditions located in other directories may be selected by choosing the Change Directory option
and clicking Refresh List. Figure 5 shows three user-created files in addition to the 16 preset flight
conditions with the default naming style. To load one of the flight conditions, select the file from the list.
This will load the selected .MAT file onto the workspace and the selection window will close
automatically. The main GUI window will update with a summary of the flight condition (Figure 6).

NASA/TM—2012-217432 7
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Figure 5.—Loading a flight condition.
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Figure 6.—Flight condition panel on the main GUI
window after loading flight condition file.
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C-MAPSS includes a steady-state solver that enables users to create new flight conditions. This
solver, which applies the Newton-Raphson method, enables the engine to be balanced at a user-specified
operating point. To create a new flight condition, begin by first loading an existing flight condition file.
Next, select Flight Condition > Create > Using steady-state solver toopen the
solver GUI (Figure 7). Enter the desired flight condition parameters, including engine health parameters,
into the provided fields. It is important to note that only one of the three power setting variables (fuel
flow, TRA, net thrust) may be specified at a time. Given one power setting variable, the solver has
enough information to calculate corresponding values for the other two. Therefore, flight conditions
created by the steady-state solver are usable by both open and closed-loop engine configurations.

) createFC = 0] x|

Create a New Flight Condition

— =alver Setup Control Limits . .
rter parameters, then hit "Balance Enging” ...
Maximum kers 0ao i on
Initial Flight Condition
i ﬁe-z & Off
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Figure 7.—Solver GUI for creating new flight conditions.
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The Control Limits panel activates or deactivates the limit regulators during the balancing
procedure. The Solver Setup panel contains fields for the solver termination parameters, maximum
iterations and allowable RMS error. Click the Balance Engine button to start the iteration process.
The convergence status and calculation results are displayed in the Solver Results panel.

There are several options available if the solver does not converge to a solution on the first attempt. A
common reason for unsuccessful convergence is a large discrepancy between the initial and desired flight
condition parameters. Thus, consider separating the problem into multiple steps to reduce the difference
between the initial and final flight conditions for the solver. For example, if the solver does not converge
to a solution for 30,000 ft altitude from an initial condition of O ft altitude, try first solving to 10,000 ft,
then from there to 20,000 ft, and so on. Occasionally, the solver may also fail to converge because several
control limits are actively enforced during the balancing procedure. Therefore, another option is to turn
off the limit regulators. It is important to note that, with the regulators deactivated, the solver may
converge to flight conditions that violate certain engine safety limits. For example, it is possible to
converge to a flight condition that exceeds the maximum fan speed limit by setting WT to a value higher
than that corresponding to a TRA of 100°. However, if the limit regulator option were active, the solver
would fail to converge to a solution. Therefore, caution should be exercised when using the steady-state
solver without the limit regulators activated. Furthermore, if the solver is not converging successfully
because the maximum allowable number of iterations (i.e., Maximum lters inthe Solver Setup
panel) is reached, consider increasing this value. Finally, the termination condition for convergence can
be relaxed by increasing the maximum allowable RMS error (i.e., Maximum RMS error inthe
Solver Setup panel).

Flight conditions are stored in a MATLAB structure called 1Cdata. Click the Save button in the
solver GUI to save 1Cdata to a .MAT file into the default directory, CLM\FC_fi les. If the solver
GUI has been closed, the loaded flight condition can be saved by selecting Save current values
under the Flight Condition menu. There is also an option (Save final values) to save the
flight condition at the end of a simulation run once it has been completed. However, if this last option is
exercised after an open-loop simulation, the TRA value may be invalid. This is because, unlike the
steady-state solver, the open-loop engine model does not “back-calculate” TRA given fuel flow rate.
Therefore, subsequent use of such a flight condition with closed-loop configurations may result in errors
or unexpected results since the closed-loop engine model utilizes TRA as an input parameter.

4.3 Input Profiles

An input profile is the time sequence of the environmental, control, and engine health parameters for
the simulation run. C-MAPSS allows the user to both load existing input profiles and create new ones.
The profiles, stored as binary .MAT files, contain initial condition data (1Cdata) as well as two
structures called timevec and datavec. The two structures contain row vectors that define a set of
time values and data values, respectively, for all of the model’s inputs (altitude, Mach number, DTamb,
fuel flow, DVSV, DVBYV, and the 13 health-parameter modifiers). C-MAPSS includes GUIs for creating
relatively simple input profiles and loading existing ones. However, since there are no restrictions on the
length of an input profile, more complex profiles can be manually created as desired.

To load an existing profile, open the dedicated GUI (Figure 8) by selecting Load from the Input
Profi le menu option on the main GUI. Available profiles are listed in the first drop-down menu. The
profiles are categorized as open-loop or closed-loop and further subdivided as constant or variable. Open-
loop profiles utilize fuel flow as the primary input whereas closed-loop profiles utilize TRA. An error
dialog will appear if a simulation run is attempted with a profile that is incompatible with the loaded
model (e.g., an open-loop profile for a closed-loop engine). Variable input profiles contain inputs to the
engine that change relative to time. Conversely, the inputs in constant profiles do not change with respect
to time.
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)} load_profile_main_gui

Load Input Profile

For Open-Loop (OL) profiles, inputs are: fuel flowe, DVEY, DVEN, and 13
Heafth Parameter modifiers.

Faor Closed-Loop (CL) profiles, inputs are: TRA, DVEY, DVEY, and 13 Health
Parameter modifiers.

--- Select an Input Profile --- j

Incremental Profiles add to contant profiles of the same type, ie. OL
incremental profies add to OL constant profiles, and CL incremental profiles
add to CL constant profiles.

--- Select an Incremerntal Profile --- j

Done |

Figure 8.—GUI for loading existing input profiles.

} load_profile_main_gui M =] |

Load Input Profile

Far Open-Loop (OL) profiles, inputs are: fuel flove, DVSY, DVEY, and 13
Health Parameter modifiers.

Far Clozed-Loop (CL) profiles, inputs are: TRA, DVEY |, DVEY | and 13 Health
Parameter modifiers.

FCOl_TRA_const mat =

Incremertal Profiles add to contarnt profiles of the same type, e OL
incremental profiles add to OL constant profiles, and CL incremental profiles
add to CL constant profiles.

--- Select an Incremental Profile ---

--- Zelect an Incremertal Profile ---

#222 Clozed-Loop Incremerntal Profiles ***+*
incremertal_TRA_S_one_deq_steps_down.m
incremental_TRA_S_one_deq_steps_up.am

incremertal_TRA_doublet m
incremertal_TRA_step dowen_1deg.m
incremental_TRA_step_dowen_20deg.m
incremental_TRA_step_up_1deg.m

incremental_TRA_step up_ 20deg.m
incremental_TRA _wide_notch.m

Figure 9.—Selecting incremental profile on top of a constant profile.

Constant profiles are designed to be used in conjunction with so-called “incremental profiles.”
By selecting a constant profile, the second drop-down menu, which contains the available incremental
profiles, is enabled (Figure 9). Incremental profiles add variation to a selected constant profile. For
instance, by selecting a constant profile of 50° TRA and an incremental profile of a step increase of 20°
TRA, the resultant profile is a step increase in TRA from 50° to 70°. The numerous permutations
achievable by combining constant profiles with incremental profiles provide the user with easy access to a
rich variety of input profiles.
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To create a profile using the GUI, first select a flight condition. Next, select Create from the
Input Profile menu option. Two options are available: (i) Open-loop profile and (ii) Closed-loop
profile. Both choices result in the same GUI appearing, but with different initializing data. Figure 10
shows the GUI if Closed-1oop profile is selected. Note that the fields for fuel flow are
unavailable. Accordingly, fields for throttle will be unavailable if Open-loop profile were selected.
The user can choose among three types of inputs: synchronous step, asynchronous step, and synchronous
ramp. Synchronous inputs mean all engine inputs change at the same time. For an asynchronous step, the
user is able to select when each input changes using the Step Time fields. The starting values
correspond to the flight condition selected. The user is free to change the ending values of the
environmental, control, and health parameter inputs. Once the settings have been accepted, the user can
save the input profile into a .MAT file. By default, this file will be stored in CLM\FT_Fi les directory.

) createF T = =]

Create Closed-Loop Input Profile

rter parameters, then hit "Accept Settings" ..
— Initizl Flight Condition — Heafth Parameter Inputs
FC1E Start Walue End Yalue Step Time
Detta Fan Eff. (36 b

— Profile Type

Delta Fan Flaw (%)
e Sychronous Step: b

Step Time (zec.) IM— Dizite et 7 (] b

Defta LPC Eff. (%) b

0 Bsunchronous Step
set step times below Defta LPC Flowe (%) lj

e Synchronous Ramp: LRl LA MR ] b

Start Time (zec.) E-D Defta HPC Eff. (%) b
Duration (sec.) E_.;. Detta HPC Flowy (%) b

Detta HPC PR (%) |y

— Simulation

Duration (sec.) ED'D Dretta HPT Eff. (%] lj

Detta HPT Floswy (%) b

Defta LPT Eff. (%) b

=2 U=m =2 =m D= D=2 l=m = 0=3 D== b= 0n=2 l=a
]
fo]

Detta LPT Flow (%) b

— Environmental & Contral Inputs
Accept Settings | Start Walue End Walue Step Time
Thrattle (den.) |1 o Iz_,:,

Zave | Fuel Flow (pph) |
Detta WSY (deo.) b

Atitude () b

fio
|
p
Close | Detta VEY (0-1) | b .o
P
p

hdach Mo, b

Detta Tamb (deg. Fjb b IZ'D

Figure 10.—GUI for creating new input profiles.
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In order to create more complex input profiles that are beyond the capabilities of the GUI, the
relevant arrays in the MATLAB workspace must be directly modified. An input profile is stored as two
separate structure arrays: timevec and datavec. The timevec structure contains arrays of time
values for the various input parameters, while the datavec structure contains the corresponding values
of these parameters. For example, consider a 60-sec input profile with a step increase in TRA from 50 to
100 at 10 sec, then a 10-sec ramp decrease in TRA back to 50 at 30 sec. Such a profile would be
implemented by: timevec.TRA = [0,10,10.015,30,40,60] and datavec.TRA =
[50,50,100,100,50,50]. Note that a step input is implemented by incrementing time by a value
equal to or less than the simulation time step (0.015 sec).

4.4  Viewing Simulation Results

Once all parameters necessary for executing a run have been initialized, run C-MAPSS by clicking
the Run Simulation button or the “Play” icon on the Simulink diagram. Once the run is completed,
there are several methods of accessing the simulation results. Several built-in plot routines are available
from the PIot menu option on the main GUI:

6 variables: fuel flow, fan speed, engine pressure ratio, core acceleration, fuel flow derivative,

net thrust

e 9 variables: throttle, fan speed, fuel flow, ratio of fuel flow to burner inlet static pressure, core
speed, HPT exit temperature, burner inlet static pressure, engine pressure ratio, net thrust

e Fan speed: demand, actual, limit

e Fuel flow and derivative: fuel flow, fuel flow derivative, core acceleration

o Map parameters: fuel flow, fan/LPC/HPC R-line map parameters, HPT/LPT PR map parameters

e Solver errors: fuel flow, component inlet/exit flow errors

o lterations: fuel flow, iterations per time step

e Stall margins: fan/LPC/HPC stall margin values

There are several other methods of accessing the model outputs. For real-time viewing of the engine
parameters as the model runs, displays and/or scopes can be connected to any of the signals within the
Simulink diagram. Additionally, since many simulation outputs are saved to the MATLAB workspace
after a run, the output variables may be directly accessed via the command prompt, functions, or scripts.
Since all output variables are functions of time, they are stored as independent, one-dimensional, column
vectors. A list and description of important variables are provided in the Appendix. Finally, it is important
to note that any signal or mathematical combination of signals in the C-MAPSS model can be saved to
the MATLAB workspace. Native Simulink blocks (e.g., To Workspace) are available to save model
output data to a file or the MATLAB workspace in several different formats. More information is
available through the MATLAB/Simulink help files and The MathWorks website (Ref. 4).

5.0 Linearization and Controller Design

In addition to the simulation of a commercial-type aircraft engine, the C-MAPSS software consists of
several tools for model linearization and controller design. These tools are accessed through the main GUI
using the Linear Model menu option. This section assumes the user has a basic understanding of
linear dynamical systems theory.
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5.1 Linear Engine Models

Linear models are commonly used for control system design. C-MAPSS allows the user to linearize
the nonlinear open-loop engine simulation into a continuous linear state-space model. Let x be a vector
containing the state variables, u be a vector containing the input variables, and y be a vector containing
the output variables. Moreover, let the subscript O denote the equilibrium condition corresponding to the
point at which the state-space model has been linearized. The state-space parameters are then defined as
perturbations about their respective equilibrium points:

AX=X—=X,
Au=u-u,
Ay=Yy-Y,

With some abuse of notation, drop A and redefine x, u, and y as the perturbed values about the
equilibrium condition. Noting that AX = X — X, = X, the linear state-space model can then be written in its

familiar form:

X=Ax+Bu
y =Cx+Du

Thus, a linear model is represented by its state-space matrices (A, B, C, D) and its equilibrium (trim) point
(X0, Uo, Yo). For C-MAPSS, the trim point is the flight condition. The state vector consists of fan speed and
core speed. The input vector consists of fuel flow, VSV, VBV, and 13 health parameters (Table 2 in the
Appendix). The output vector elements are listed in Table 3 in the Appendix.

C-MAPSS includes several linear engine models that are readily accessible. To load an existing linear
model, select Load from the Linear Model menu option, and select from the list in the GUI window
that opens (Figure 11). The linear models are located in the directory CLM\LEM_fi les. Each file
consists of two MATLAB objects: SSeng_16x27_unsc contains the four state-space matrices and
ICdata contains the trim conditions. When the user selects a file, it will be loaded into the workspace.
The GUI window will be closed, and the name of the linear model will appear in the Linear Engine
Model panel in the upper-right corner of the top-level GUI.

To create a new linear model, first load or create a flight condition about which the linearization will
take place. Once flight conditions are set, select Create from the Linear Model menu option. This
will open the linearization GUI (Figure 12). The linearization routine consists of a dedicated Simulink
model (Figure 13) that contains a copy of the nonlinear open-loop engine model. The state-space matrices
essentially consist of partial derivatives relating various pairs of engine variables. For example, the
elements of C are partial derivatives of the output variables with respect to the state variables. The
linearization algorithm computes these partial derivatives using the nonlinear engine model by perturbing
the variables from their equilibrium values one at a time, and then determining the resulting effects on the
rest of the variables once mass flows are balanced throughout the engine. The linearization GUI allows
the user to modify the perturbation magnitudes (in units of the respective variable, not percentage change)
and the simulation duration to ensure mass flow balance. However, the default values should be
satisfactory for most applications.

Click the Linearize button to start the linearization routine. The MATLAB command window will
update with the progress of the linearization process. When the process has completed, the elements of the
state-space matrices and the eigenvalues of A will be displayed in the command window. The message
Completed build of Iinear model will appear in the status box near the top of the GUI
window. The Save button on the GUI will also become active at this point. Clicking Save will create a
binary .MAT file (in CLM\LEM_fi les by default) containing the state-space matrices (as a state-space
system MATLAB object) and the equilibrium condition (ICdata structure).
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Figure 11.—Loading an existing linear model.
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Figure 12.—Creating a new linear engine model.

NASA/TM—2012-217432

16



Pl

g
{

fan speed

Fan HP HPT HP

core speed M

Tuel flowy

{
{

LPC HP LPT HP

WEN

{

WEY

HPC HP

| Ne_dot > IR13
e T 055

PCHR
27 Simulation Outputs J_’

pct corr fan speed

dinputs + 2 states

Engine

Figure 13.—Simulink model used for linearization routine.

Once a new linear model has been created or an existing one has been loaded, the user can perform
some basic analysis by choosing Analyze LEM from the Linear Model menu option. This will open
the GUI shown in Figure 14. The upper-left panel contains buttons for carrying out five different types of
analysis for a simplified single-input/single-output (SISO) version of the linear model (with incremental
fuel flow as input and incremental fan speed as output). Text results are shown in the display panel on the
right half of the window. The five options are:

o state-space model: Display the A, B, C, and D matrices of the SISO linear model.

o step response: Compute and plot the step response.

o bode plot: Draw a Bode plot for the magnitude and phase angle of the linear model’s frequency
response.

e poles and zeros: Display the poles and zeros of the transfer function from fuel flow to fan
speed.

o transfer function: Display the transfer function in numerical form.

The drop-down menu in the middle of the GUI shown in Figure 14 can be used to analyze the full multi-
input/multi-output (MIMO) linear model. Select one of the 16 inputs (fuel flow, DVSV, DVBV, health
parameters). Click run simulation to generate the linear model response to a doublet-shaped input
(step-increase followed by step-decrease of the input parameter about its initial value). The bottom panel
has four buttons that produce plots of the inputs and key outputs when clicked. It is important to note that,
when dealing with linear models, all of these variables (both inputs and outputs) are incremental relative
to the respective flight condition.
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C-MAPSS also provides tools for comparing the linear model with the nonlinear engine model. To do
S0, select Compare with CLM from the Linear Model menu option, which will open the GUI
shown in Figure 15. The drop-down menu functions in the same way as the one in Figure 14 to select the
input variable for the comparison. Clicking run simulation will run the Simulink file shown in
Figure 16, which can be opened by checking the show Simulink model box. This Simulink diagram
contains both linear and nonlinear engine models. Furthermore, the input to the nonlinear model is the
sum of the trimmed values and the incremental values seen by the linear model. The comparison plot
routines are written such that the linear model outputs (incremental variables) are added to the respective
trimmed values. Hence, by examining these comparison plots, the user can quickly determine whether the
linear model is a good representation of the nonlinear model.

) analyze LEM_16x27 gui 2 |=] |
Analyze the LEM
— Analyze SIS0 maodel for fuel flowe to fan speed. — Dizplay
state-space model | poles and zZeros | Dizplays output from "state-space” =]
"noles and zeros" and "transter function”
step responze | tranzfer function | pushbuttons.

hode plot |

— simulate response to doublet
-- select input -- j

run simulation |

— plots
inputs W DVSY DVEY |

135 health inputs

|
If, PCHIR, Mc, Epr, Phi |
|

T24, T48, P=30, P30, Fn

Close | Help |

Figure 14.—Analyze a linear model.
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MF, PCRIR, Mc, epr, P230, W21, T48, Fn |

SmFan, SmLPC, SmHPC

Figure 15.—Comparing linear model and nonlinear model.
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Figure 16.—Simulink model used to compare linear model with nonlinear engine model.

5.2  Controller Design

With a newly created or existing linear engine model, C-MAPSS can be used to design customized
controllers for the engine. Since these “point” controllers are designed from a linear model, their intended
usage is localized around the same flight condition as the linear model. To use the GUI to create a new
point controller, a flight condition must have been defined and a linear model corresponding to that flight
condition either loaded or created, though not necessarily saved. Once the linear model is in the
MATLAB workspace, select Design Controller fromthe Linear Model menu to open the
controller design GUI (Figure 17). Using the drop-down menu, select the engine variable to be controlled:

Fan speed (Nf)

Core speed (Nc)

Core acceleration (Nc_dot)

HPT exit temperature (T48)

Max. combustor static pressure (high Ps30)
Min. combustor static pressure (low Ps30)
Engine pressure ratio (EPR)
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Figure 17.—Designing a custom controller.

Controller design parameters, such as the natural frequency and damping ratio of the closed-loop
system and compensator pole locations, can be modified. Once set, click the Design button to start the
controller design process. The controller is designed using Edmunds’ model-matching method, which is
described in Section 7.2 of Reference 5. Figure 18 shows the GUI after executing a typical design
process. In this case, a T48 regulator was selected, with the desired natural frequency and damping ratio
set to 3 rad/s and 0.9, respectively. Once the design process is complete, the display window (which
mirrors the MATLAB command prompt), shows a summary of the controller parameters. The first part of
the message is the value of the norm of the error in the design calculations. The lower this number is, the
better the step response of the actual closed-loop linear model matches that of the ideal closed-loop
system that the user specified by selecting the natural frequency and damping ratio values. Also shown in
the command window is the structure DesignData, which contains key information about the design:

Flight condition of the linear model that was used

Natural frequency (Wn) and damping ratio (zeta) of the ideal closed-loop system
Poles of the controller, as selected by the user

Norm of the error in the design

Type of regulator

The display also shows the names of the controller in the MATLAB workspace.
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Figure 18.—Sample controller design. Display window shows status of controller design.

With the design process completed, the user can save the controller, close the controller design GUI,
or perform additional controller analysis. To conduct further analysis, first click the Begin Analysis
button on the Analysis options panel. This will set up the analysis process and activate the
remaining five buttons, which will allow the user to quickly determine the open- and closed-loop
properties of the controller in both numerical and graphical form. The results will be plotted and shown
on the status display as appropriate. If the design is satisfactory, the controller can be saved with the
Save button. If the controller design is not satisfactory (e.g., the overshoot of the step response is too
high, the response is too slow, etc.), the design parameters (natural frequency, damping ratio, controller
poles) can be changed for another iteration. The saved regulator .MAT files are located in separate folders
for each type of regulator in the directory CLsim\Reg_Fi les. For example, all of the fan-speed
controllers are located in CLsim\Reg_Ffiles\fan_speed.

5.3  Using Custom Controllers

Using the C-MAPSS GUI, custom-designed linear controllers can be readily applied to the nonlinear
engine model. A fan speed controller designed using the process described in Section 5.2 can be used
with the nonlinear engine model by selecting the “switched” model and choosing the Point fan
speed controller option (refer to Section 4.1 for details on using the switched model). However,
this option can be exercised with any linear controller regardless of the design process so long as the
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controller parameters are saved in a compatible format. Namely, the controller must be stored in the same
manner as those included in the directory CLsim\Reg_fi les. The controller must be a single-
input/single-output (SISO) MATLAB state-space object saved as a single .MAT file. The .MAT file
should also include a structure called DesignData that contains a description of the controller (see
Section 5.2). Although not required, this structure is used by the C-MAPSS GUI to display the controller
parameters. The controller can then be applied to the nonlinear engine model using the aforementioned
process.

The C-MAPSS engine models are designed with a modular structure to facilitate modification or
replacement of the default control system. The engine-only portion of the simulation requires a fixed
number of inputs to operate properly: three environmental parameters (altitude, Mach number, deviation
from standard ambient temperature), 13 health parameters, and three control parameters (fuel flow, VSV,
VBV). Engine operation is independent of the method by which these variables are specified. Thus, the
advanced user can easily modify the default control system or replace it with a variety of custom-designed
control architectures (e.g., nonlinear control, model-predictive control, etc.). In the default control system,
fan speed is controlled using fuel flow, and VSV and VBV are scheduled. An advanced user might want
to modify the fan speed control, leaving VSV and VBV scheduled. This could be accomplished by
modifying the Simulink diagram shown in Figure 2 in the CM2_SADL_Ncd_ IS model. To introduce a
different method of controlling VSV and VBV into C-MAPSS, the schedulled VSV and VBV block
in the model CM2_SADL_Ncd_ IS must be replaced. Alternatively, it may be more convenient to work
from the open-loop engine model CM2_OL __1S if one wants to connect the engine to a novel control
system that is significantly different from the default one. Development of these sophisticated customized
models requires direct manipulation of Simulink files and creation of new Simulink models, and is clearly
beyond the scope of the C-MAPSS GUI. However, if these custom models contain the requisite inputs,
the GUI can still be used to load and run the simulation by selecting the Custom Model option from
the Model/Controller Selection menu.

6.0 Examples

This section provides examples of how to use most of the features of C-MAPSS. For each case, it is
assumed that the user has appropriately set up C-MAPSS by running the setup_everything script.
Thus, the top-level GUI should be open with the default model active.

6.1 Load Input Profiles

The quickest and simplest way to run a simulation using C-MAPSS is to load an existing input
profile. To do so:

1) Selectthe Input Profile menu option, then Load.

2) Select the desired input profile from the drop-down menu. In this case, we will select
FC10_ramp_TRA77_4Kft_MOp25 under the closed-loop variable profiles category. Note that the
main GUI has updated automatically to reflect the features of this profile.

3) Click Done to close the load profile GUI.

4) Click Run Simulation to start the run.

5) Once completed, use the P1ot menu option to quickly access the results. Figure 19 shows the nine-
variable plot as an example.
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Figure 19.—Nine-variable plot after running an existing input profile (FC10_ramp_TRA77_4Kft_MOp25).

Create Flight Conditions and Input Profiles

Suppose now that we wish to run a transient case that is not available from the list of included input

profiles. Additionally, we wish to begin the transient at a flight condition that is not included with
C-MAPSS. In this example, let the starting point of the profile be at 85° TRA, 24000 ft altitude, Mach
0.60. The conditions then change linearly (i.e., ramp) to 75° TRA, 22000 ft altitude, Mach 0.65 in 4 sec,
starting at the 5-sec mark.

1)

2)

3)

4)
5)
6)
7)

8)

To create a flight condition, first load a (preferably similar) flight condition. Select Load from
Flight Condition, and choose FCO6, which corresponds to 100° TRA, 20000 ft altitude,
Mach 0.70.

Now, open the steady-state solver GUI by selecting Create > Using steady-state
solver from the Flight Condition menu option.

Enter the desired initial values of TRA, altitude, and Mach Number into the appropriate fields. Click
Balance Engine. The results should be similar to those shown in Figure 20. The results can be
saved for future use, though this is not a necessary step in creating an input profile.

To create the profile, close the solver GUI, and choose Create > Closed-loop profile
from the Input Profile menu.

Select Synchronous Ramp. Set start time and duration as desired; in this case, 5 and 4 sec,
respectively. We may leave the total simulation duration at 20 sec.

Set the end values of TRA, altitude, and Mach Number. Note that the start values correspond to the
newly created flight condition.

Click Accept Settings. Note that the main GUI updates with the newly created profile (see
Figure 21).

Save the profile if so desired and click Close. Run the simulation and view results. Figure 22 shows
the 9 variables plot.
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6.3 Incremental Profiles

This section describes how to utilize the incremental profile functionality in C-MAPSS. The process
will demonstrate the versatility of using incremental profiles over fixed input profiles in certain
applications. For this example, suppose we wish to evaluate how a doublet fuel flow input affects an
open-loop engine for two different flight conditions.

1) First, we click the Restart button. This will close and reopen the main GUI and, more importantly,
clear the workspace of results from the previous run to prevent confusion.

2) Select the open-loop engine model (CM2_OL__1S) from the Nonlinear Model &

Control ler menu option.

3) Select Load from the Input Profile option.

4) Choose a constant, open-loop profile. In this case, we will use FT_WFf12K_const.

5) Choose an incremental profile that will add to this constant profile. In this example, we choose the
incremental WF _doublet.m incremental profile. Click Done. Notice from the updated plots
shown in the top-level GUI that the doublet increment is superimposed onto the constant profile.

6) Usethe Run Simulation button to run the engine model with the specified input. Then, use the
Plot menu option to view results. Figure 23 shows the plots created using the 6 variables
submenu selection.

7) Now, suppose we wish to analyze the same doublet command, but around a different fuel flow. To
demonstrate, load the FT_WF¥15K_const constant profile. There is no need to restart C-MAPSS.

8) Again, select the incremental_Wf_doublet.m incremental profile. Note that the doublet is
now around the 15,000 pph fuel flow level.

9) Run and view the results. Figure 24 shows the 6 variables plot for this second case.
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Figure 23.—Six-variable plot for open-loop incremental profile (doublet at 12,000 pph fuel flow).
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Figure 24.—Six-variable plot for open-loop incremental profile (doublet at 15,000 pph fuel flow).

As this example shows, the incremental profile function provides an efficient method to simulate
many transient runs that have similar input profiles but different flight conditions. If the desired flight
conditions do not exist, they simply need to be created and saved using the steady-state solver. There is no
need to additionally create a new variable profile each time.

6.4 Iterative Solver Settings

As described previously, the engine portion of each C-MAPSS Simulink model is iterated within each
time step to maintain consistency of flow rates into and out of each of the five rotating components. By
default, the maximum number of iterations per time step is 100 and the allowable flow rate error for each
rotating component is 2 percent. For the majority of cases, the default settings are sufficient.
Nevertheless, the more advanced user may deem it necessary to change the iterative solver settings to
better suit particular applications. This section describes how to analyze iterative solver performance and
change solver settings.

To the illustrate the process, we use a transient profile of 20-sec duration at sea-level, static
conditions, and include a large step change in TRA from 0° to 100° at the 5-sec mark. Since this profile
does not exist as a pre-packaged profile, it must first be created. Therefore, use the procedures described
in Section 6.2 to create this input profile. The flight condition, FC14 (sea-level static), may be used as the
starting point. Once the input profile is created, run the simulation and select the Solver errors
option from the PIot menu. A set of plots similar to those shown in Figure 25 will appear. These plots
show the evolution of the flow errors. It is important to note that the flow errors are plotted against solver
iterations, which is not proportional to time since the number of iterations may vary with each time step.
The oscillatory behavior is due to the flow errors being large at each time step before any iterations occur,
and then driven down as the solver iterates. In this case, since the default solver settings are unchanged,
all errors (most notably error 3, which represents difference in flow rates at the LPT exit and core nozzle
exit) are eventually driven to below 2 percent.
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Figure 25.—Flow rate errors for 2 percent allowable error.

However, suppose we wish to have all flow errors to be within 0.5 percent. From Figure 25, we see
that such a requirement would affect error 3 and error 4 (consistency among HPC, burner, and HPT flow
rates), which remain above 0.5 percent at certain time steps with the default settings. To change the
allowable error, modify the variable error_tol from the MATLAB command line. The unit of
error_tol is percent. Thus, change allowable error to 0.5 percent by entering error_tol = 0.5
and run the simulation again. Figure 26 shows the results of this change. All flow errors are now iterated
until they are less than 0.5 percent. To illustrate the error convergence in more detail, the magnitude of
error 3 is plotted for 20 solver iterations (Figure 27). Lines connecting consecutive data points are shown
to elucidate the progression of the error. Each “peak” represents the error at the start of a new time step
(hence, these 20 iterations represent 6 time steps). The solver iterates the engine model to achieve lower
error values until the magnitude is less than 0.5 percent. The time step is then incremented, causing
another peak in error magnitude, and the process is repeated.
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Figure 28.—Comparison of solver iterations per time step for 2 and 0.5 percent allowable errors.

The output variable I'ter_count records the number of iterations at each simulation time step.
Figure 28 shows the time evolution of iterations per time step for the cases of 2 and 0.5 percent allowable
error. Expectedly, the case of the smaller allowable error requires more solver iterations per time step.
Nonetheless, for both cases, the number of iterations per time step remains well below the default
maximum of 100. If this ceiling is reached, it may be changed by editing the variable max_iter from

the MATLAB command line.
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6.5  Create and Analyze Linear Models

This section describes the steps for creating and analyzing a linear model. We will use the flight
condition created in Section 6.2: 85° TRA, 24000 ft altitude, Mach 0.6.

1) Once this flight condition is loaded or created, select Create from the Linear Model menu
option.

2) The default values in the linearization GUI should be sufficient. Therefore, start the process by
clicking Linearize. The MATLAB command prompt will display the linearization progress and
the final state-space matrices once completed.

3) Save, if necessary, and close the linearization GUI. The newly created linear model is now loaded
into the main GUI (Figure 29).

4) To analyze the linear model, select Analyze LEM from the Linear Model menu option.

5) Utilize the built-in analysis functionalities in the GUI. For instance, Figure 30 shows the results of
clicking the transfer function button. The display window shows the transfer function of the
linear model from fuel flow to fan speed.

6) Utilize the drop-down menu in the simulate response to doublet panel to obtain the
linear model’s response to a doublet command in one of the inputs. Use the adjacent plots panel to
view results. Figure 31, generated using the third plot button, shows the responses of several
parameters of the linear model to a doublet fuel flow input.

7) Finally, use the Compare with CLM option from the Linear Model menu to compare
responses of the linear model with those of the nonlinear model. Figure 32 shows the results of
comparing the two models with a doublet fuel flow input. As the plots show, the linear model is a
good localized representation of the nonlinear model.
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6.6  Design, Analyze, and Use Custom Controllers

This example shows the steps to design, analyze, and utilize custom controllers. In this case, we
will design a fan speed controller for a certain flight condition, analyze it, and use it with the nonlinear
engine model.

1) Load a flight condition into C-MAPSS. In this case, we will use 60° TRA, sea-level static,
standard day (FC11).

2) Load the corresponding linear model (LEM_FC11).

3) Select Design controller fromthe Linear Model menu option.

4) Select Fan speed from the drop-down menu. For this design, we will change the parameters
from the default values to: 5 rad/s natural frequency, 0.8 damping ratio, and two poles at —25.
Note that the poles must be entered into the GUI as the negative of the actual desired value.
Hence, for —25, we enter 25 into the appropriate fields in the GUI.

5) Click Design. Note the parameters are summarized in the display window and MATLAB
command prompt window. Figure 33 shows the results of the design.

6) Click Begin Analysis. The five plot buttons should now be available for the user to analyze
the controller. For instance, Figure 34 shows the plot created by clicking plot closed-1oop
step response. The plot shows the step response of the fan speed when using the newly
created controller with the linear model.

7) To utilize the controller with the nonlinear model, first save the controller. In this example, we
will save the controller as reg_Nf_FC11 new. Close the controller design GUI.

8) From the main GUI, select the “switched” model option, and choose Point fan speed
controller (no limit regulators)

9) Load the newly created controller, reg_Nf _FC11 new. This file should be shown in the list of
available controllers if it was saved to the default directory (see Figure 35). If not, select Change
Directory and direct C-MAPSS to load the appropriate file.

10) Load a closed-loop input profile. Click Run Simulation to run the nonlinear model with the
fan speed controller.
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Figure 33.—Designing a custom fan speed controller.
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Figure 34.—Step response of linear model with newly designed fan speed controller.
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Figure 35.—Ultilize newly created controller with nonlinear engine model.

To show the difference between the full scheduled controller and the newly designed controller, an
existing input profile is loaded: FCO6_ramp_TRA_60, which ramps TRA from 100° to 60° at 20000 ft
and Mach 0.7. It is important to note that this flight condition is not a good match for the flight condition
at which the fan speed controller was created. Figure 36 and Figure 37 (generated using the Fan speed
option under the P 1ot menu) show the responses of the nonlinear engine model with the point fan speed
controller and the full engine control system, respectively. As expected, the latter system, which utilizes a
scheduled fan speed controller, produces a better fan speed response (with less “under-shoot” across the
desired fan speed) than the point fan speed controller.
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Appendix—C-MAPSS Input/Output Variables

TABLE 2.—C-MAPSS INPUT VARIABLES
[Index refers to position in linear model input vector.]

Index Description Variable name Units
1 Fuel flow Wf pph
2 Delta VSV DVSV deg
3 Delta VBV DVBV -

4 Fan efficiency modifier fan_eff_mod %
5 Fan flow modifier fan_flow_mod %
6 Fan pressure ratio modifier fan_PR_mod %
7 LPC efficiency modifier LPC_eff mod %
8 LPC flow modifier LPC_flow_mod %
9 LPC pressure ratio modifier LPC PR_mod %
10 HPC efficiency modifier HPC_eff_mod %
11 HPC flow modifier HPC_flow_mod %
12 HPC pressure ratio modifier HPC_PR_mod %
13 HPT efficiency modifier HPT_eff_mod %
14 HPT flow modifier HPT_flow_mod %
15 LPT efficiency modifier LPT_eff_mod %
16 LPT flow modifier LPT flow mod %
TABLE 3.—C-MAPSS OUTPUT VARIABLES
[Index refers to position in linear model output vector.]

Index Description Variable name Units
1 Physical fan speed Nf RPM
2 Physical core speed Nc RPM
3 Engine pressure ratio (P50/P2) EPR --
4 Total pressure at fan outlet P21 psia
5 Total temperature at fan outlet T21 R
6 Total pressure at LPC outlet P24 psia
7 Total temperature at LPC outlet T24 R
8 Total pressure at HPC outlet P30 psia
9 Total temperature at HPC outlet T30 R
10 Total pressure at burner outlet P40 psia
11 Total temperature at burner outlet T40 R
12 Total pressure at HPT outlet P45 psia
13 Total temperature at HPT outlet T48 R
14 Total pressure at LPT outlet P50 psia
15 Total temperature at LPT outlet T50 R
16 Fan flow W21 pps
17 Net thrust Fn Ibf
18 Gross thrust Fg Ibf
19 Fan stall margin SmFan %

20 LPC stall margin SmLPC %
21 HPC stall margin SmHPC %
22 Corrected fan speed NfR RPM
23 Corrected core speed NcR RPM
24 Total pressure in bypass-duct P15 Psia
25 Percent corrected fan speed PCNfR %

26 Static pressure at HPC outlet Ps30 psia
27 Ratio of fuel flow to Ps30 Phi pph/psia
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TABLE 4—ADDITIONAL C-MAPSS OUTPUT VARIABLES
[Not included in linear model.]

Description Variable name Units
Fan acceleration Nf_dot rpm/s
Core acceleration Nc_dot rpm/s
Demanded fan speed Nf_dmd rpm
Pressure at fan inlet P2 psia
Corrected fan speed demanded PCNfRdmd %
Output of PCNfR filter for gain scheduling PCNfR_filtered %
Throttle resolver angle TRA deg
Fan inlet total temperature T2 R
Derivative of fuel flow WA _dot Ibm/s?
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