

Orbital Debris Modeling

J.-C. Liou, PhD NASA Orbital Debris Program Office Johnson Space Center, Houston, Texas

Canadian Space Agency St Hubert, Quebec, Canada, 28 March 2012

Outline

- The NASA OD Engineering Model
 - A mathematical model capable of predicting OD impact risks for the ISS and other critical space assets

The NASA OD Evolutionary Model

 A physical model capable of predicting future debris environment based on user-specified scenarios

The NASA Standard Satellite Breakup Model

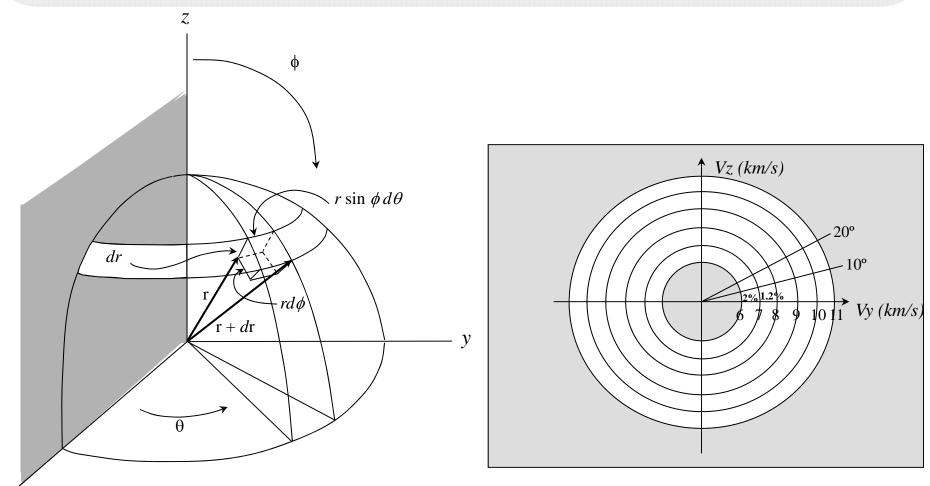
 A model describing the outcome of a satellite breakup (explosion or collision)

Orbital Debris Engineering Models

What Is an Engineering Model?

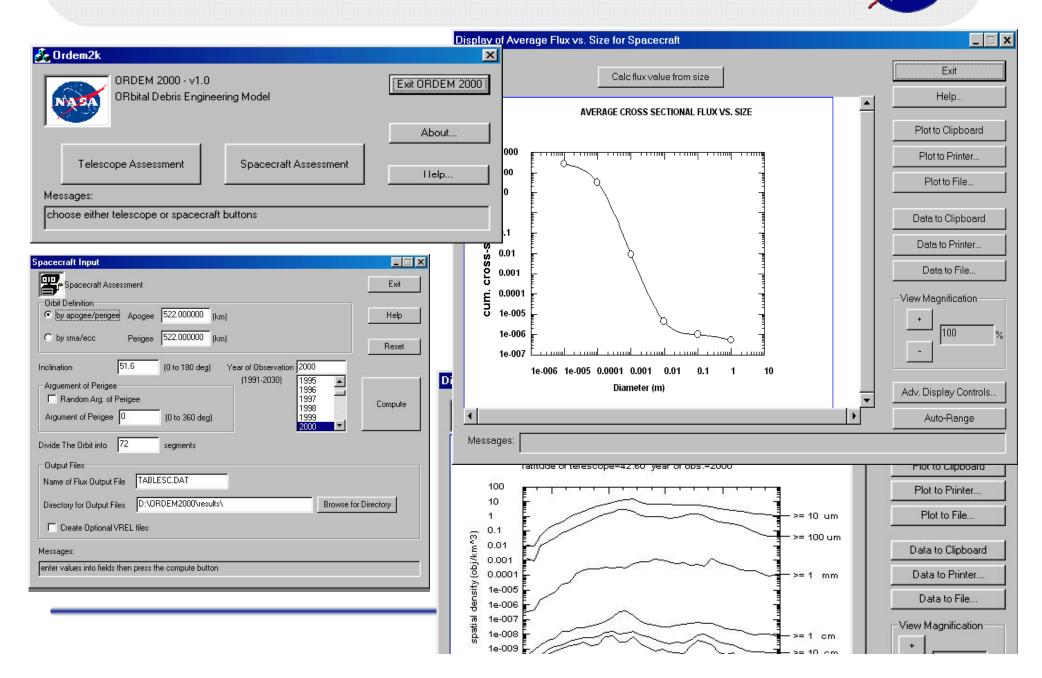
- An OD engineering model is a mathematical tool
 - Designed to describe the current and near-future OD flux in the environment
 - Created primarily for spacecraft designers/operators to reliably assess spacecraft risk due to OD impacts
 - Has been used to estimate sensor flux for radar/telescope observers
- There is a need to update the mode on a regular basis
 - New data
 - Better techniques
 - Changes in the environment
 - Need for expanded capabilities

History of the NASA OD Engineering Models



- Pre-1990 used a simple flux curve based mostly on model results
- 1994 Space Station Freedom model and ORDEM96 obtained Haystack radar data for debris in the 1 cm to 10 cm regime
 - Used simple equations to describe debris populations in 6 inclination and 2 eccentricity groups
- ORDEM2000 used new techniques and improved computer capabilities to describe the LEO environment
 - Populations were derived from data and then processed to generate the model environment

х


ORDEM2000 Debris Environment

• The LEO environment is described by a finite element model ($5^{\circ} \times 5^{\circ} \times 50$ km) with spatial density and velocity distributions of debris of 6 different sizes

ORDEM2000 Graphical User Interface (GUI)

Highlights of the New Model – ORDEM 3.0

• Expand data sources in time, altitude, and particle size

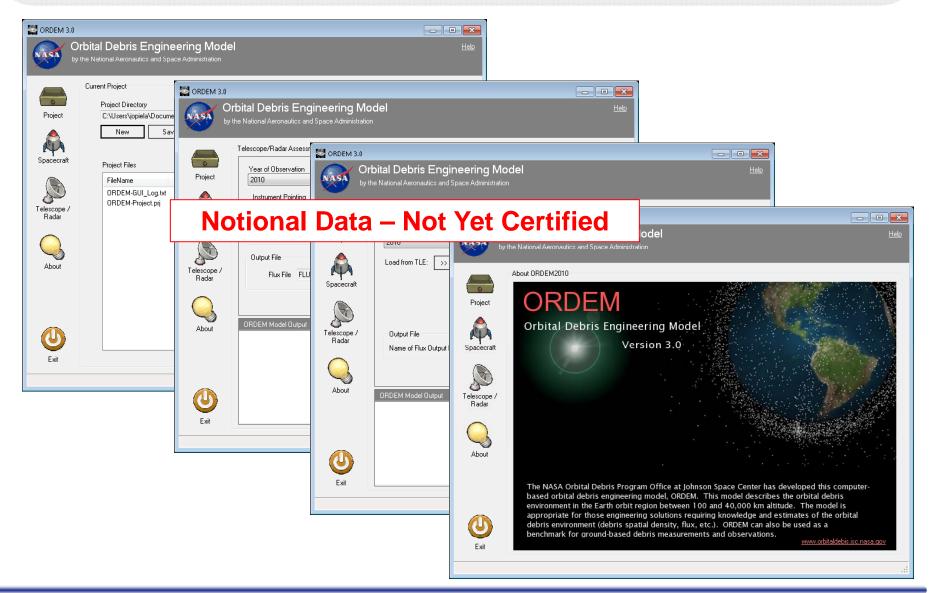
- Altitude: 100 to 40,000 km (LEO through GEO)
- LEO-GTO: Use SSN catalog, Haystack, HAX, Goldstone, STS windows/radiators to develop OD populations
- GEO: use the MODEST GEO survey data to develop ≥10 cm populations

Utilize higher fidelity supporting environmental models

- LEGEND replaces EVOLVE 4.0
- Material density breakdown included
- NaK droplet and degradation/ejecta product models added

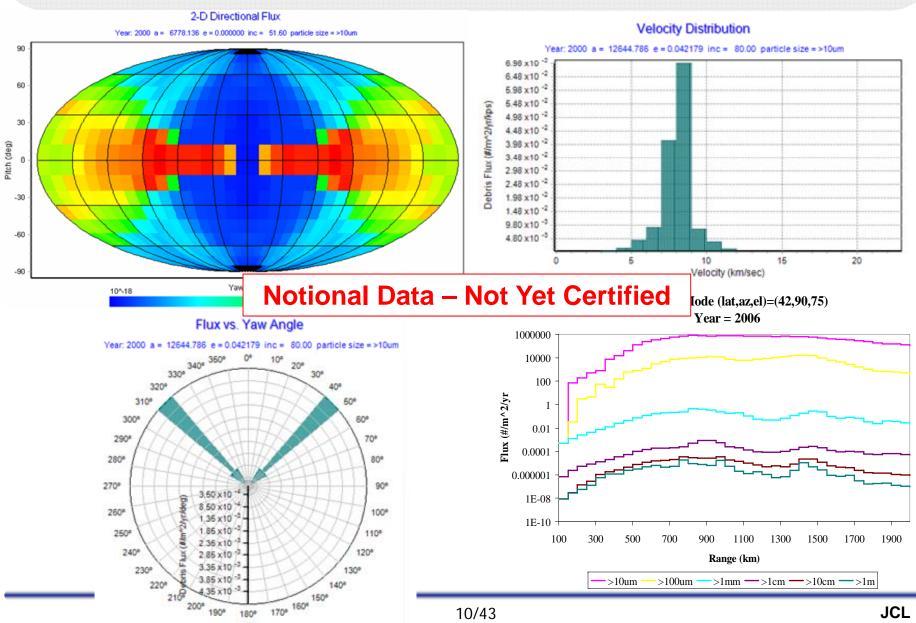
Use Bayesian statistics to derive debris populations from data

- Model uncertainties are included in the output


Maintain two analysis modes: spacecraft and telescope/radar

 Debris fluxes through 'igloo' in pitch, yaw, impact velocity elements (in spacecraft mode) and through cylinder in range elements (in telescope/radar mode)

• Update Graphical User Interface (GUI)


ORDEM 3.0 GUI Interface

Sample ORDEM 3.0 Model Output

ORDEM2000 versus ORDEM 3.0

Parameter	ORDEM2000	ORDEM 3.0
Spacecraft and Telescope/Radar analysis modes	Yes	Yes
Time range	1991 to 2030	2010 to 2035
Altitude range with minimum debris size	200 to 2000 km (>10 μm)	100 to 2000 km(>10 μm) 2000 to 33,000 (>1 cm) 33,000 to 40,000 km (>10 cm)
Model population breakdown	No	Intacts and mission related debris Fragments RORSAT NaK coolant droplets Degradation/ejecta
Material density breakdown	No	Low-density(<2 g/cm ³) : fragments Medium-density(2-6 g/cm ³): fragments, degrad/ejecta High-density(>6 g/cm ³): fragments, degrad/ejecta RORSAT NaK coolant droplets (0.9 g/cm ³)
Model cumulative size thresholds	10 μm, 100 μm, 1 mm, 1 cm , 10 cm, 1 m	10 μm, 31.6 μm, 100 μm, 316 μm, 1 mm, 3.16 mm, 1 cm, 3.16 cm, 10 cm, 31.6 cm, 1 m
Population uncertainties	No	Yes
File size	16 MB	1.4 GB
Run time	Seconds	Minutes to hours

Status of ORDEM 3.0

- Model in final validation and verification process
- Official release is scheduled for later this year
 - Will be available for download from the NASA Orbital Debris
 Program Office website

NASA Orbital Debris Evolutionary Model

LEGEND Overview (1/2)

• LEGEND, A <u>LEO-to-GEO environment debris model</u>

- Is a high fidelity, three-dimensional numerical simulation model for long-term orbital debris evolutionary studies
- Replaces the previous one-dimensional, LEO only model, EVOLVE
- Includes intacts (rocket bodies and spacecraft), mission-related debris (rings, caps, *etc.*), and explosion/collision fragments
- Handles objects individually
- Is capable of simulating objects down to 1 mm in size, but the focus has been on ≥10 cm objects
- Covers altitudes up to 40,000 km
- Can project the environment several hundred years into the future

LEGEND Overview (2/2)

• LEGEND, an orbital debris evolutionary model

- Uses a deterministic approach to mimic the historical debris environment based on recorded launches and breakups
- Uses a Monte Carlo approach and an innovative, pair-wise collision probability evaluation algorithm to simulate future collision activities
- Analyzes future debris environment based on user-specified launch traffics, postmission disposal, and active debris removal options
- Ten peer-reviewed journal papers have been published about LEGEND and its applications since 2004

Peer-Reviewed Journal Publications (LEGEND and LEGEND Applications)

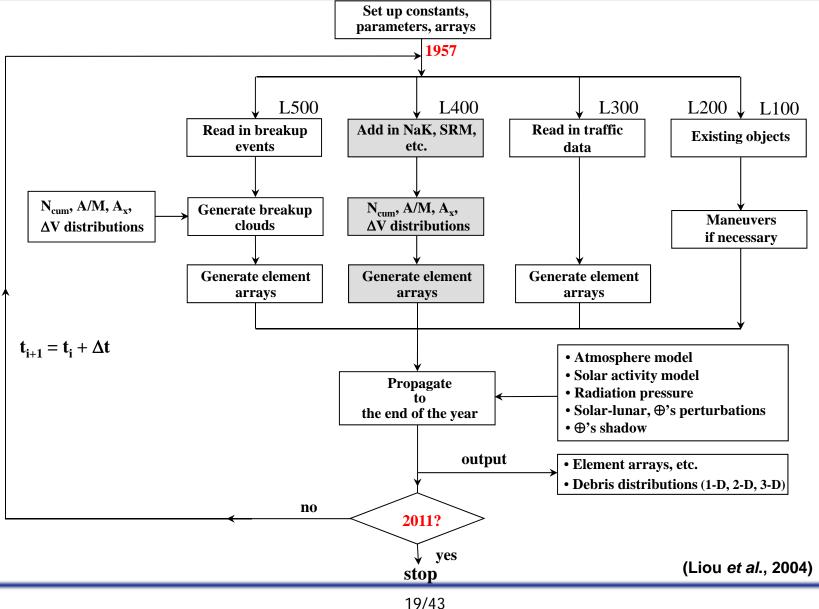
- 1. Liou, J.-C. *et al.*, LEGEND A three-dimensional LEO-to-GEO debris evolutionary model. *Adv. Space Res.* 34, 5, 981-986, 2004.
- 2. Liou, J.-C. and Johnson, N.L., A LEO satellite postmission disposal study using LEGEND, *Acta Astronautica* 57, 324-329, 2005.
- 3. Liou, J.-C., Collision activities in the future orbital debris environment, *Adv. Space Res.* 38, 9, 2102-2106, 2006.
- 4. Liou, J.-C. and Johnson, N.L., Risks in space from orbiting debris, *Science* 311, 340-341, 2006.
- 5. Liou, J.-C., A statistic analysis of the future debris environment, *Acta Astronautica* 62, 264-271, 2008.
- 6. Liou, J.-C. and Johnson, N.L., Instability of the present LEO satellite population, *Adv. Space Res.* 41, 1046-1053, 2008.
- Liou, J.-C. and Johnson, N.L., Characterization of the cataloged Fengyun-1C fragments and their long-term effect on the LEO environment, *Adv. Space Res.* 43, 1407-1415, 2009.
- 8. Liou, J.-C. and Johnson, N.L., A sensitivity study of the effectiveness of active debris removal in LEO, *Acta Astronautica* 64, 236-243, 2009.
- 9. Liou, J.-C. *et al.*, Controlling the growth of future LEO debris populations with active debris removal, *Acta Astronautica* 66, 648-653, 2010.
- 10. Liou, J.-C., An active debris removal parametric study for LEO environment remediation, *Adv. Space Res.* 47, 1865-1876, 2011.

Development History

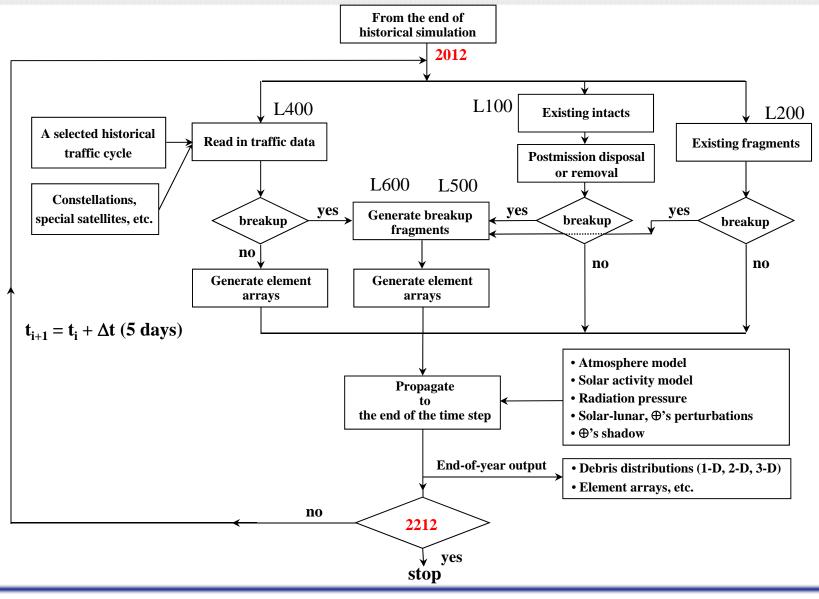
History

- 2003: Completed the historical component
- 2005: Developed the "Cube" collision probability evaluation algorithm
- 2006: Completed the future projection component
- 2006: Added the postmission disposal mitigation options
- 2007: Added the new capabilities to evaluate and identify individual objects for removal
- 2008: Added additional options and output information for debris removal

Future Improvements


- Increase the computational speed of the two orbit propagators
- Validate model predictions for sub-10 cm populations

The LEGEND Code



- LEGEND is written in Fortran
 - Includes ~18,000 lines of Fortran code
- LEGEND runs on Unix/Linux-based workstations
 - Typical runtime: ~days to weeks
- LEGEND is only available to a few well-trained Orbital Debris Program Office scientists

LEGEND Architecture (1/2)

LEGEND Architecture (2/2)

LEGEND Supporting Models (1/4)

- DBS database: a comprehensive record of historical launches and breakup events
 - Time, type, orbit, physical properties (mass, area), etc.
 - The database is updated annually

• Space Surveillance Network (SSN) catalogs

- Daily records of the historical growth of the ≥10 cm debris population
- Basis of empirical area-to-mass ratio (A/M) distributions of large breakup fragments
- New files are downloaded from "Space Track" website daily

Future launch traffic model

 Typically a repeat of the last 8-year cycle, as commonly adopted by the international debris modeling community

LEGEND Supporting Models (2/4)

Atmospheric drag model

- Jacchia atmospheric density model (1977)
- Drag perturbation equations based on King-Hele (1987)
- Solar flux (at 10.7 cm wavelength) model consisting of three components
 - Historical daily records available from the National Oceanic and Atmospheric Administration (NOAA) Space Weather Prediction Center (SWPC)
 - Short-term projection provided by NOAA/SWPC currently through 2019
 - Long-term projection is a repeat of a 13th-order sine and cosine functional fit to Solar Cycles 18 to 23 (1944 – 2010)
 - Similar to projections developed for long-term debris evolutionary models by other space agencies (ASI, UKSA, *etc.*)

LEGEND Supporting Models (3/4)

GEOprop orbital propagator

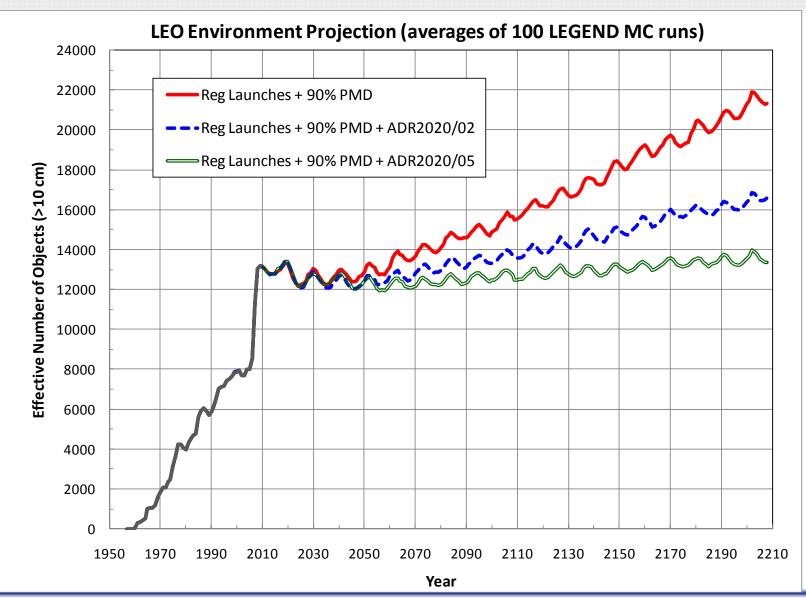
- Propagates objects near geosynchronous (GEO) region
- Perturbations include solar and lunar gravitational forces, solar radiation pressure, and Earth's gravity-field zonal (J₂, J₃, and J₄) and tesserral (J_{2,2}, J_{3,1}, J_{3,3}, J_{4,2}, and J_{4,4}) harmonics

Prop3D orbit propagator

- Propagates orbits of objects in LEO and GTO regions
- Perturbations include atmospheric drag, solar and lunar gravitational forces, solar radiation pressure, and Earth's gravity-field zonal harmonics J₂, J₃, and J₄
- Both propagators compare well with similar tools used by other space agencies

LEGEND Supporting Models (4/4)

- NASA Standard Satellite Breakup Model
 - Describes the outcome of an explosion or collision
 - Fragment size, A/M, and ΔV distributions
 - Based on seven, well-observed on-orbit explosions, several ground-based impact experiments, and one on-orbit collision


LEGEND Applications

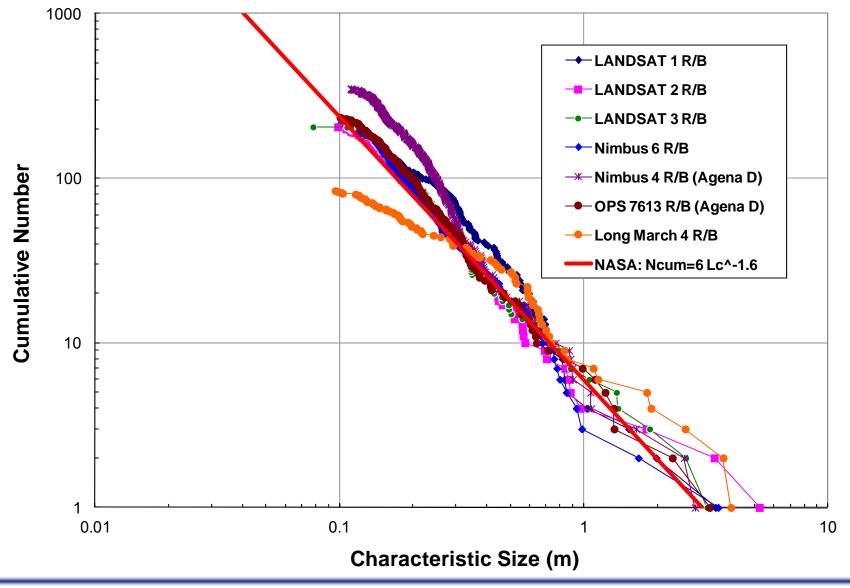
- LEGEND is the tool the NASA Orbital Debris Program Office uses to
 - Provide debris environment projection for the next 200 years
 - Based on user-specified scenarios (launch traffics, postmission disposal, active debris removal options, etc)
 - Evaluate the instability of the current debris environment
 - Assess the growth of the future debris populations
 - Characterize the effectiveness of the NASA, U.S., and international debris mitigation measures
 - Quantify the benefits of active debris removal (ADR)

Sample LEGEND Output

NASA Standard Satellite Breakup Model

What Is a Satellite Breakup Model?

- A satellite breakup model describes the outcome of a satellite breakup (explosion or collision)
 - Fragment size, area-to-mass ratio (A/M), and ΔV distributions
- The key to provide good short- and long-term debris impact risk assessments for critical space assets is the ability to reliably predict the outcome of a satellite breakup
- There are two options to develop the model
 - Theoretical
 - Empirical



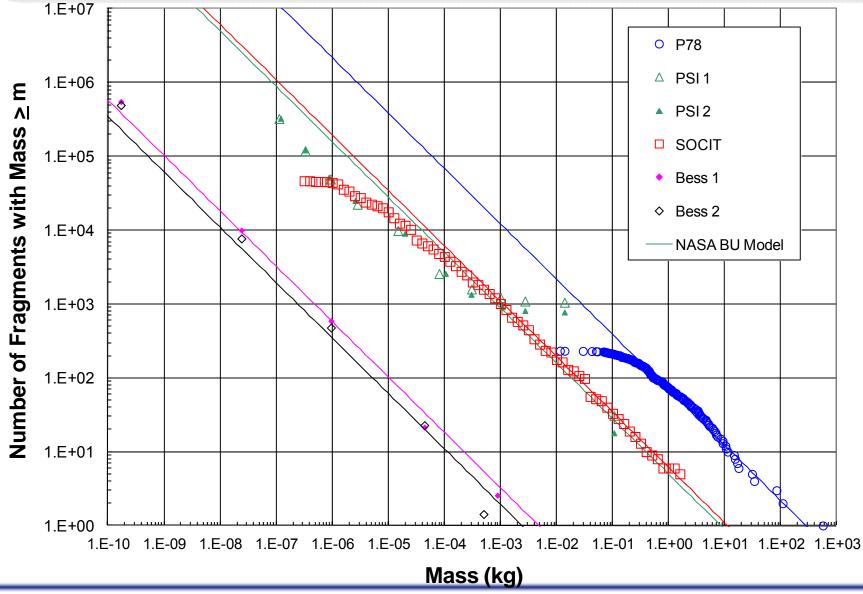
- **NASA Breakup Model for Explosions**
- Based on the fragment distribution of 7 well-observed on-orbit R/B explosions
- Fragments are described by a single power law distribution
- Explosions are classified into 6 different groups with different scaling factors (sf) assigned to their fragment distribution

$$N_{cum} = sf \times 6 \times L_{c}^{-1.6}$$

 N_{cum} : number of fragments $\ge L_c$, L_c : characteristic length in (m)

Size Distribution of Explosion Fragments

NASA Breakup Model for Collisions

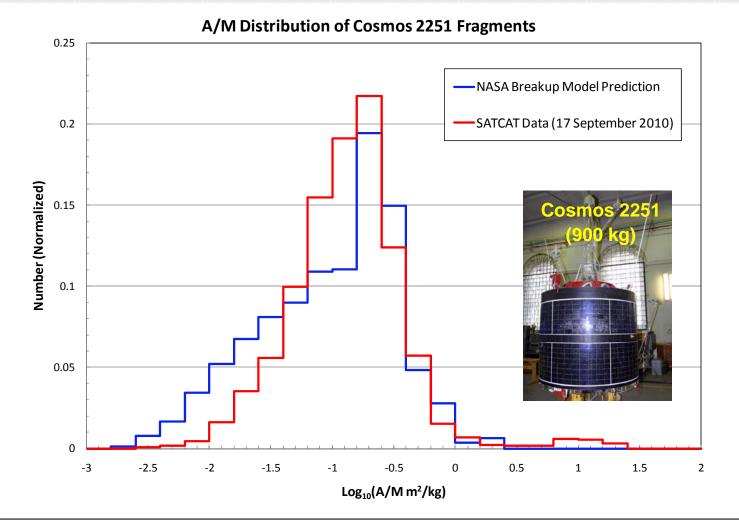


- Based on ground-based impact experiments and one well observed on-orbit collision (P78/SOLWIND)
- A catastrophic collision occurs when the ratio of impact energy to target mass exceeds 40 J/g
- Fragments are described by a single power law distribution

$$N_{cum} = 0.1 \times (M_{tot})^{0.75} \times L_{c}^{-1.71}$$

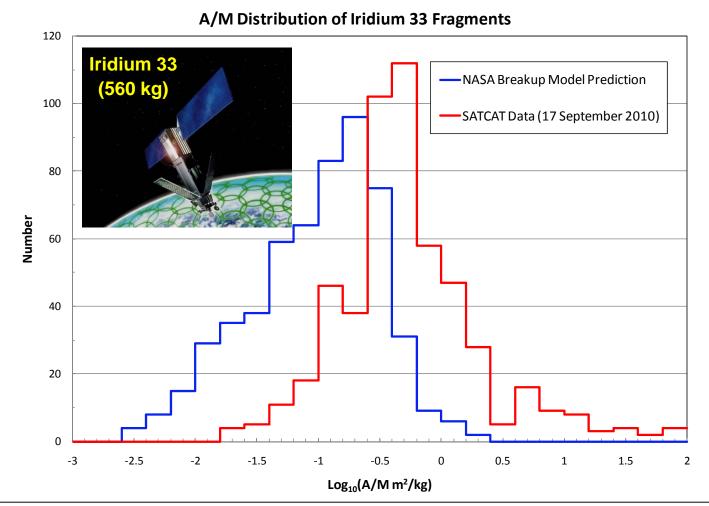
$$\begin{split} N_{cum}: number \ of \ fragments \geq L_c \\ Lc: \ characteristic \ length \ in \ (m), \\ M_{tot} &= m_{tar} + m_{proj} \ (catastrophic) \ or \\ M_{tot} &= m_{proj} + m_{proj} \times V^2 / (km/sec)^2 \ (non-catastrophic) \end{split}$$

Mass Distribution of Collision Fragments


Improving the NASA Breakup Model

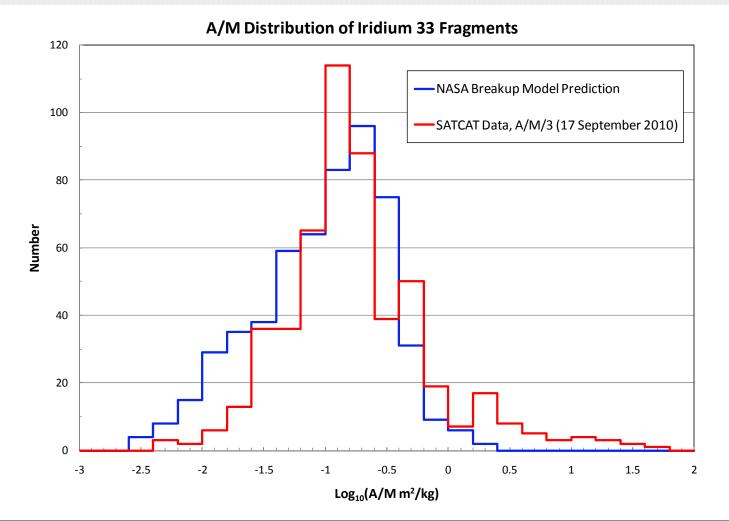
- The NASA satellite breakup model has been adopted by major international space agencies for various OD environment studies]
- As new materials and new construction techniques are developed for modern satellites, there is a need to conduct additional ground-based tests and use the data to further enhance the collision model

Cosmos 2251 Fragments



The A/M distribution of the Cosmos 2251 fragments matches well with the NASA model prediction

Iridium 33 Fragments (1/2)



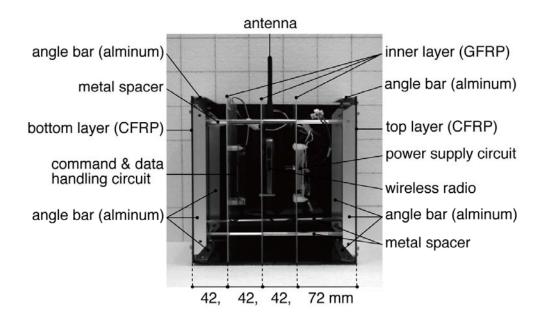
- The A/M distribution of the Iridium 33 fragments appears to be systematically higher than
 the NASA model prediction
- Lightweight composite materials were extensively used in the construction of the vehicle

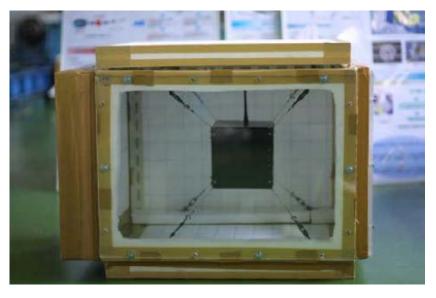
Iridium 33 Fragments (2/2)

• The A/M distribution of the Iridium 33 fragments is approximately a factor of 3 higher than the NASA model prediction

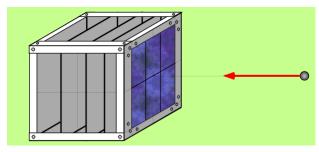
7 Micro Satellite Impact Tests (2005-2008)

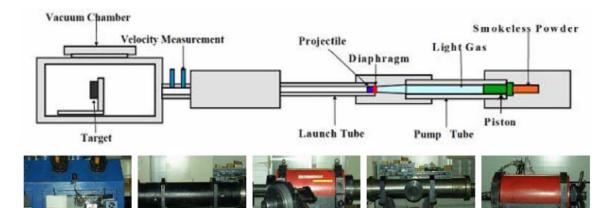
 The project is a collaboration between NASA ODPO and the Kyushu University in Japan


	Size (cm)	M _t (g)	M _p (g) / D _p (cm)	V _{imp} (km/s)	EMR (J/g)	Impact Angle
0501H	15	740	4.03 / 1.4	4.44	53.7	\perp
0502L	15	740	39.2 / 3.0	1.45	55.7	\bot
0701L	20	1300	39.2 / 3.0	1.66	41.5	Ť
0702L	20	1283	39.2 / 3.0	1.66	42.0	//
0703L	20	1285	39.2 / 3.0	1.72	45.1	Ť
0801F	20	1515	39.2 / 3.0	1.74	39.2	Ť
0801R	20	1525	39.3 / 3.0	1.78	40.8	\perp


Micro Satellites

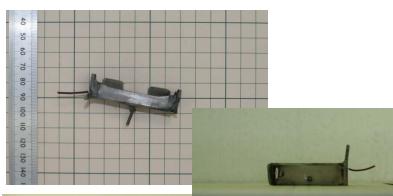
Target satellites

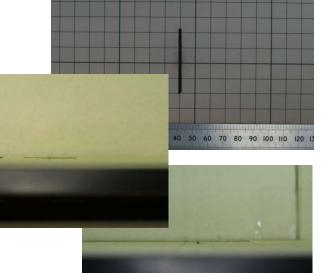

- Cube-shaped, with 6 Carbon Fiber Reinforced Plastic (CFRP) outer walls and 3 Glass Fiber Reinforced Plastic (GFRP) boards inside
 - Direction of CFRP fiber: (0°, 90°)
 - Thickness of the front and back CFRP walls: 2 mm
 - Thickness of other CFRP and GFRP walls: 1 mm
- Components: lithium-ion batteries, transmitter, solar cells, power circuit board, communication circuit board, on board computer, antenna



Ground-based Impact Experiments

Impact Fragmentation

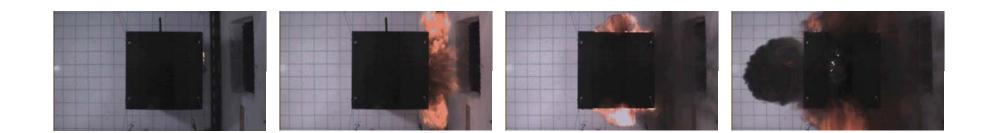

- Target: Micro satellite covered with Multi-Layer Insulation (MLI) a solar panel on one side
 - Objective: characterize satellite, MLI, and solar panel fragments



Sample Measurement Data

No	Characteristic	Label	Shape	x[m]	y[m]	z[m]	M[kg]
1	CFRP+Aluminum	Medium	Plate_Square	0.28284	0.28284	0.03031	2.014E-01
2	CFRP+Aluminum	Medium	Plate_Square	0.28284	0.28284	0.02186	8.873E-02
3	CFRP	Low	Plate_Square	0.28284	0.28284	0.00167	6.263E-02
4	CFRP+Aluminum	Medium	Plate_Square	0.28284	0.28284	0.06762	7.567E-02
5	GFRP+Metal	Medium	Plate_Square	0.28230	0.19110	0.08777	5.075E-02
6	CFRP+Aluninum+Metal	Medium	Cube_Complex_Oblong	0.34520	0.14032	0.05755	6.910E-02
7	CFRP	Low	Plate_Square	0.14846	0.13875	0.02689	2.192E-02
8	CFRP	Low	Plate_Square	0.14953	0.14678	0.01391	1.668E-02
9	CFRP	Low	Plate_Oblong	0.20080	0.02619	0.00406	1.234E-03
10	Aluminum	Medium	Cube_Complex_Oblong	0.15790	0.03335	0.02576	1.464E-02

Upcoming Ground-based Impact Test



 A collaboration of NASA ODPO, AF/SMC, and University of Florida

	SOCIT	Proposed Test	
Target dimensions	46 cm (dia) $ imes$ 30 cm (ht)	50 cm	
Target mass	34.5 kg	50 kg	
MLI and solar panel	No	Yes	
Projectile material	Al sphere	Al sphere	
Projectile dimensions/mass	4.7 cm diameter, 150 g	5 cm diameter, 176 g	
Impact speed	6.075 km/sec	7 km/sec	
Impact Energy to Target Mass ratio (EMR)	78 J/g	86 J/g	

Questions?

