

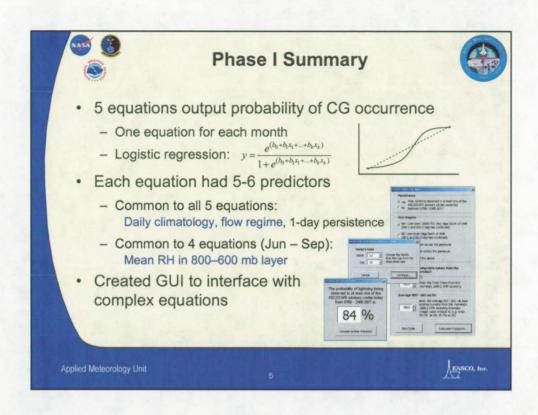
Overview

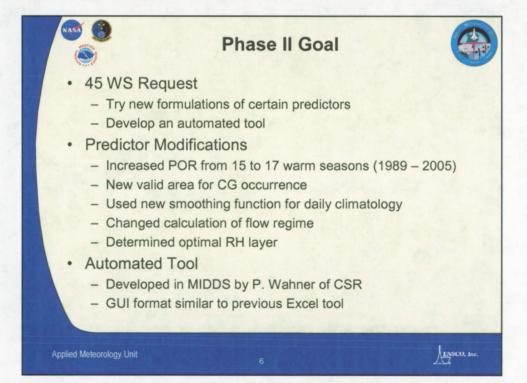
- · 45 WS provides lightning probability for the day/week
 - Daily Weather Briefing at 7:00 am local time
 - Used for general daily Range operations planning
- · Subjective analysis of model and observational data
- AMU-developed Objective Lightning Forecast Tool
 - Provide probability of lightning occurrence May-September
 - Accessed through GUI
- · 45 WS requested an update to the tool:
 - Modify certain predictors and possibly improve performance
 - Create automated tool

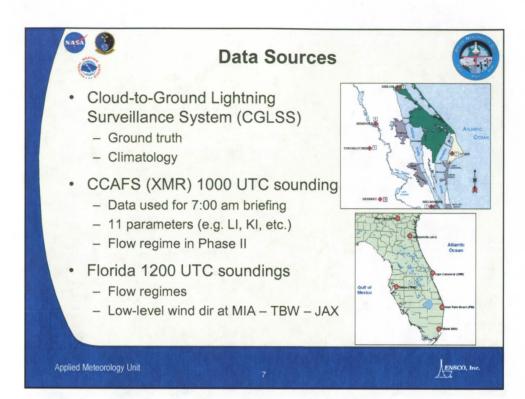
Applied Meteorology Unit

3

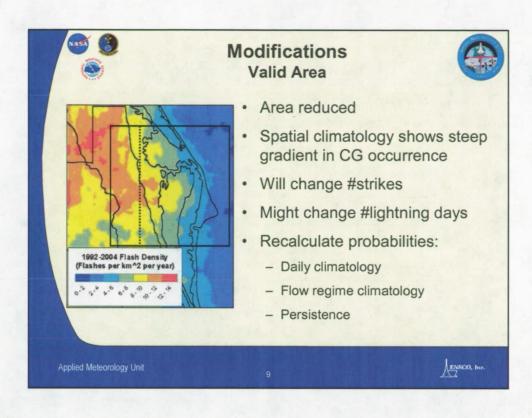
ENSCO, Inc.

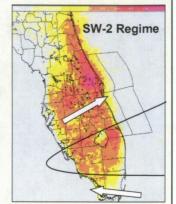



Phase I Summary



- Pre-Phase I: Neumann-Pfeffer Thunderstorm Index (NPTI)
 - Developed over 30 years ago, tuned to KSC/CCAFS area
 - Official objective lightning forecasting tool
- NPTI performance worse than 1-day persistence
- Forecasters requested new lightning forecast tool
- New tool showed
 - 48% improvement over NPTI; 31-53% over persistence
 - Good reliability, accuracy measures, and skill scores
 - Ability to distinguish between lightning/non-lightning days
- Transitioned to operations before 2005 lightning season


Applied Meteorology Unit



Modifications Flow Regime Probability

- Method from FSU study: identified six distinct flow regimes
- · Flow regime determined by:
 - Average wind direction in 1000-700 mb
 - 1200 UTC MIA TBW JAX
- Lightning frequencies calculated for each flow regime in each month
- Modification
 - ISSUE: no flow regime 42% of days
 - SOLUTION: Used XMR 1000 UTC sounding as discriminator

Applied Meteorology Unit

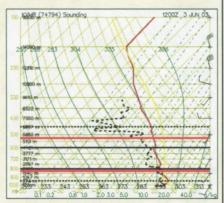
ENSCO, Inc.

Modifications Flow Regime Probability

- · Using XMR sounding:
 - Reduced days in 'Other'and 'Missing' by over 70%
 - Increased number of days in SW-2, SE-1, NE and NW
- New values are ~10% lower than Phase I

Flow	# of Days		Lightning Prob (%)	
Regimes	Before	After	Before	After
SW-1	301	301	62	62
SW-2	256	606	72	57
SE-1	318	438	51	32
SE-2	248	248	26	26
NW	100	307	43	32
NE	114	317	18	11
Other	1077	326	44	35
Missing	187	58	-	_

Applied Meteorology Unit



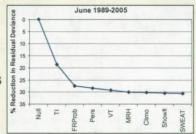
Modifications **Optimal Mid-Level RH Layer**

- Mean 800 600 mb RH used as a predictor in NPTI
- Modification: Find mean RH layer most correlated with lightning occurrence
- · Iterative technique
 - Bottom: 950 mb; Top: 450 mb
 - Calculate correlation of each layer to lightning occurrence

Optimal layer: 825 - 525 mb

1000 UTC 3 June 2003 **CCAFS** Sounding

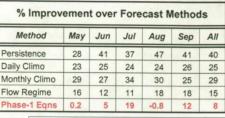
ENSCO, Inc.

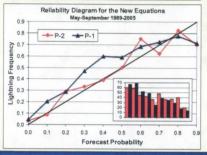

Phase II Equations

- Development data: 14 yrs
 Verification data: 3 yrs

 14 candidate predictors
 5 logistic regression equations
 Chose predictors that made · Development data: 14 yrs

- > 0.5% reduction in variance


Predictors for Each Month in Rank Order						
May	June	July	August	September		
K-Index	Thompson Index	Thompson Index	Thompson Index	825-525 mb MRH		
Flow Regime	Flow Regime	Flow Regime	Flow Regime	Flow Regime		
Vertical Totals	Persistence	Total Totals	Daily Climatology	Persistence		
Daily Climatology	Vertical Totals	Persistence	825-525 mb MRH	Vertical Totals		
Persistence	825-525 mb MRH		Vertical Totals	Daily Climatology		



Performance

- Four tests using 3-yr verification set
- · Brier Skill Score
 - Phase II improved skill over other methods
 - Overall 8% improvement over Phase 1, 56% over NPTI
- Reliability Diagram
 - Black line: perfect reliability
 - Phase I and II have "under-forecast" bias
 - Phase I: -5.9%
 - · Phase II: -0.4%

Applied Meteorology Unit

5

ENSCO, Inc.

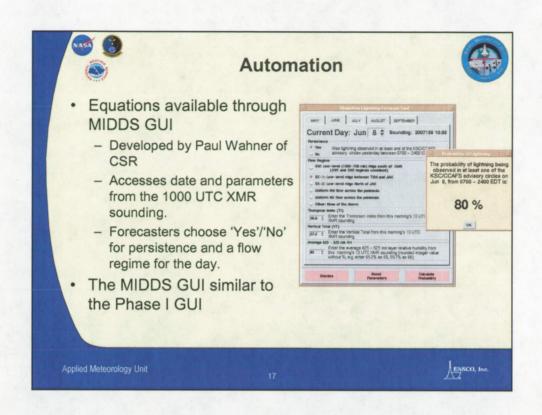
Performance

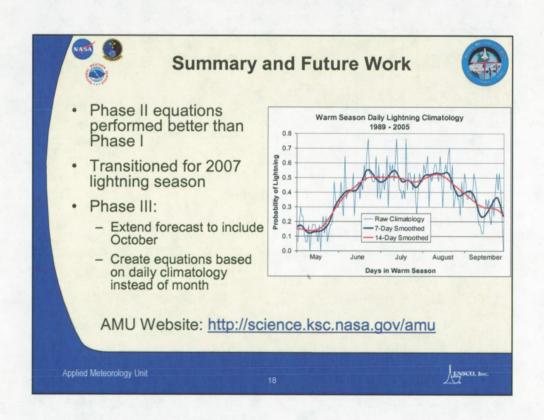
40% 30% 20%

- Lightning/non-lightning day distributions
 - Phase I and II distinguish nonlightning days well
 - Phase II better at distinguishing lightning days

Contingency Table Statistics
Updated (P-2) and Phase 1 tools (P-1

Statistic	P-2 (0.47)	1-Day Persistence	P-1 (0.35)
POD	0.68	0.62	0.66
FAR	0.21	0.23	0.23
HR	0.74	0.71	0.73
CSI	0.52	0.46	0.50
HSS	0.47	0.40	0.44
KSS	0.47	0.39	0.44


o 0.1 02 03 0.4 0.5 0.5 0.7 0.8


Forecast Probabilities

Contingency table statistics

- Yes/No cutoff 0.47 for Phase II, 0.35 for Phase I
- Both Phases better than persistence
- Phase II scores show best accuracy and skill

Applied Meteorology Unit

