
Predicting Software Suitability 

using a .tsayesian iseiiei iNetworK 

Justin M. Beaver	 Guy A. Schiavone	 Joseph S. Berrios 
NASA, Kennedy Space Center 	 University of Central Florida 	 University of Central Florida 

Justin.M.Beaverthnasa.eov 	 Guytiiics.ucf.edu	 JBerrios@mail.ucf.edu 

Abstract 

The ability to reliably predict the end quality of 
software under development presents a sign ficant 
advantage for a development team. It provides an 
opportunity to address high risk components earlier in 
the development life cycle, when their impact is 
minimized. This research proposes a model that captures 
the evolution of the quality of a software product, and 
provides reliable forecasts of the end quality of the 
software being developed in terms of product suitability. 
Development team skill, software process maturity, and 
software problem complexity are hypothesized as driving 
factors of software product quality. The cause-effect 
relationships between these factors and the elements of 
software suitability are modeled using Bayesian Belief 
Networks, a machine learning method. This research 
presents a Bayesian Network for software quality, and 
the techniques used to quantj5.' the factors that influence 
and represent software quality. The developed model is 
found to be effective in predicting the end product 
quality of small-scale software development efforts. 

1. Introduction 

Software quality is perhaps the most vaguely defined 
and overused term iii the field of software engineering. It 
is meant to encompass all of the stakeholder needs and 
perspectives in terms of the delivered software product 
[1]. It is meant to include both objective and subjective 
technical evaluations. "High" quality is the inherent, yet 
vastly subjective goal of every software development 
team. A standardized approach to quanti'ing both the 
elements of software quality, and the factors that influence 
software quality is essential to providing insight into a 
soft\vare product that is consistent and reliable across 
applications. 

Modeling software quality involves both a current 
assessment of the software development effort, and a

prediction of the quality of the delivered software 
product. Accuracy in modeling the complexities of a 
soffivare development effort is essential to providing 
meaningful insight into the predicted quality of the 
software product at the time of delivery. Such insight 
allows a development team to identify and address 
problem areas within an evolving software system. 
1-listorically, the quality models developed in the software 
engineering community are suspect largely because of 
their inability to be universally applicable, and their 
inherent data quality problems [2]. The contributions to 
software quality modeling that focus on using complex 
adaptive systems have shown potential in accurately 
representing cause-effect relationships in software product 
development, and providing models that are adaptable to 
a given development team and environment, and perform 
well in the presence of uncertain or incomplete data [3] 

[4] [5]. 

This research effort addresses a need for improved 
insight into the quality of software under development. 
The product of this research is a software quality model 
that attempts to provide a reliable projection of the 
software product quality using various measures from the 
software development life cycle. 

2. Software Quality Modeling Approach 

What causes software quality in a product? There ai-e 
many examples in software engineering literature [9] [10] 
[11] in which empirical relationships are established 
between software development measures and software 
quality measures. Trends among various measurements 
are identified, but the issue of causality is insufficiently 
addressed [2]. That is, the establishment of an empirical 
relationship between a design metric and a software 
quality measure does not prove, or for that matter even 
imply, that the measured design characteristic caused the 
software quality characteristic. Empirical relationships 
must be enhanced with logic in order to be considered as 
representing cause-effect [6]. Consider a hypothetical 
study that identifies an empirical relationship between the 
number of lines-of-code in a software compoIent and the



corresponding number of defects. Would a viable 
approach to reducing defects be to consolidate several 
lines into a single statement, thus reducing the component 
size? Does this improve the quality of the software 
product? Such a study may have executed a perfectly 
correct statistical experiment, and yet has provided little 
value to the software engineering community. 

This software quality research effort attempts to 
identify, model, and validate those factors that influence 
the quality of a software product. The following three 
premises are proposed as a basis for the structure -of the 
software quality model: 
1. Maturity of software development processes is a 

causal factor in software product quality. 
2. Comjlexity of the software problem is a causal factor 

in software product quality. 
3. Capability of the software development team is a 

causal factor in software product quality. 
The intent of this research is to model these causal factors 
as drivers of software product quality, and validate the 
accuracy of the model in predicting product quality. 
Figure 1 below is a cause-effect diagram that details the 
way in which the three premises above are used to predict 
specific software quality values. 

Requirements Correctness!	 Design Correctness! 

	

Completeness	 Completeness 

	

Reqmernent_	
--	 Design Skill -


Skill 

	

Requirements	 Design Process - 

	

Process	 \ 

	

Qualily	 '\	 Design 

	

Need	 \	 CorrnpIecly

Quality 
Metric 

ntplerrterrtutien.__.__./	 Test SI 

	

Implernenletion	 Test Process 

	

Process	 / 

	

1r0P1:	 ___________7/	 Test Cooeruge - 

Implementation Correctness!	 Integration/Test 

Completeness	 Correctness/Completeness

Figure 2. High-Level Software Quality Model 

the nodes. The network is called Bayesian because the 
transformation function from inputs to outputs at each 
node is based on Bayes' Rule for conditional probability. 
Each node is characterized by a conditional probability 
table, which contains the probabilities of each possible 
output state in terms of the possible combinations of input 
states. BBNs learn their prior probabilities for the various 
state combinations of the inputs and outputs using prior 
data sets. The adaptive nature of the BBN makes it an 
attractive option for representing software quality 
accurately at the local level. That is, while the model 
structure is universal, the application of that structure is 
specific to a given organization and dependent on the data 
that populates their local conditional probability tables. 

Sorturrure 
P IUhlttlTl 

Cornplextu, 

De'neloprneflt ', 
Ic-am	

(	
Procezz-

Capahiltty	 ,/	 u,	 M.sturtty 

Software QlJ.Ie

Model 

Software

Product Qualfty 

Figure 1. Causal Factors of a Software Quality Metric 

Quality metrics are affected by the correctness and 
completeness of the activities and artifacts at each phase 
of the development life cycle. Measures of correctness 
and completeness are driven by the development team's 
skill/experience level, the process maturity, and the 
complexity for each phase 

The proposed quality model defines software 
development cause-effect relationships in the context of a 
Bayesian Belief Network (BBN). A BBN is a directed 
acyclic graph containing nodes and arcs. The nodes 
represent discrete random variables within the model, and 
the arcs represent the cause-effect relationship between

Figure 2 is a high level depiction of the snucture of 
the Bayesian Belief Network used to model software 
product quality. Inputs to the model are ratings of the 
development team's capability, maturity of the project's 
development process, and complexity of the software 
problem. The output of the model is calculated values of 
software product quality. The software quality model 
itself relates the inputs and outputs through a set of 
intermediary nodes that represent the correctness and 
completeness at each phase of the development life cycle. 
The internal structure of the software quality model is 
addressed in more detail in Section 4.



3. Quantifying Software Quality Factors 

In order to effectively model the quality of a software 
product, it is necessary to quantify all aspects of the inputs 
and outputs of the proposed model in terms of usable 
measures. The following paragraphs detail the approach 
taken to quantify the various aspects of development team 
capability, software process maturity, software problem 
complexity, and software product quality. 

3.1 Assessing Development Team Capability 

The approach taken to assess the development team 
capability involved two stages: to provide a criterion for 
rating the skills of individual team members, and then to 
provide a method for consolidating the various individual 
capabilities into a team capability. At the individual level, 
a four-tier ordinal rating scheme was created to capture a 
software developer's skill and experience. Each software 
project team member is assigned a separate rating (1, 2, 3, 
or 4) for each of the four major life cycle phases: 
Requirements Development, Design Development, 
Implementation, and Integration/Test. The rating of an 
individual for a given phase is based on a set of criteria 
for that phase that takes formal education, formal framing, 
and indusfry experience into account. Thus, each project 
team member will have four ratings, one for each of the 
four phases, and each rating is on an ordinal scale (1-4) 
based on the individual's education and experience. 

The overall Development Team Capability is 
captured as 16 discrete variables which represent the 
distribution of team skill in each of the four life cycle 
phases. Table I below lists those variables that were used 
to quantify the collective skill and experience of a 
software development team. Each of the 16 variables is 
comprised of a four-tiered scale representing the 
percentage of the team with the corresponding skill level. 
Each tier corresponds to a percentage range of the overall 
tuam. For example, one of the 16 variables used to 
represent overall Development Team Capability captures 
the proportion of team members with Requirements Skill 
Level 1. The four tiers used represent the ranges 0%-
25%, 26%-50%, 51%-75%, and 76%-l00%. So, if there 
are four development team members involved in 
requirements development, and one of them has been 
appraised at Requirements Skill Level 1, then the 
Requirements Skill 1 rating for the overall team is 1 (25% 
of the team). Similarly, proportions may be determined 
for each of the 16 team skill ratings (4 skill levels for each 
of the four phases). This level of detail provides the 
model with a complete picture the skill set within the 
development team.

Table 1. DeveloDment Team Cansihilitv Factors 
Variable Name Description 
Requirements Level I Percentage of requirements team 

assessed at skill/experience level 1. 
Requirements Level 2 Percentage of req uirements team 

assessed at skill/experience level 2. 
Requirements Level 3 Percentage of requirements team 

_______________________ assessed at skill/experience level 3. 
Requirements Level 4

- 
Percentage of requirements team 
assessed at skill/experience level 4. 

Design Level I Percentage of desigi team assessed at 
skill/experience level 1. __________________________ 

Design Level 2 Percentage of design team assessed at 
__________________________ skill/experience level 2. 
Design Level 3 Percentage of design seam assessed at 

_________________________ skill/experince level 3. 
Design Level 4 Percentage of design team assessed at 

_________________________ skill/experience level 4. 
Implementation Level I Percentage of implementation team 

assessed at skill/experience level I. 
Implementation Level 2 Percentage of implementation team 

_________________________ assessed at skill/experience level 2. 
Implementation Level 3 Percentage of implementation team 

_________________________ assessed at skill/experience level 3. 
Implementation Level 4 Percentage of implementation team 

assessed at skill/experience level 4. 
Test Level I Percentage of integration/test team 

__________________________ assessed at skill/experience level 1. 
Test Level 2 Percentage of integration/test team 

__________________________ assessed at skill/experience level 2. 
Test Level 3 Percentage of integration/test team 

__________________________ assessed at skill/experience level 3. 
Test Level 4 Percentage of integration/test team 

assessed at skill/experience level 4.

3.2 Assessing Software Process Maturity 

Software process maturity is quantified using the 
ISO/IEC 15504 [7] standard as guide in determining the 
elements of the software process to consider. The 
ISO/IEC 15504 is an international standard for software 
process assessment, and is the product of a collaborative 
effort of several major software process improvement 
efforth. The ISO/IEC 15504 is comprised of four 
different process categories that address four distinct 
areas within a software development project: project 
management processes, engineering processes, support 
processes, and customer-supplier processes. As this 
research focuses solely on the technical quality of the 
software product, the Engineering process category, 
which is the set of processes that cover the specification, 
design, implementation and integration/test of the 
software product will be the area that will be considered 
as relevant to the model. The Engineering process 
category of the ISO/IEC 15504 standard consists of seven 
different processes, five of which pertain to the software 
engineering life cycle. 



Table 2 Software Process Maturity Factors 
ISO/IEC 15504 Engineering Process Category 

Process	 Practice	 - 

Software 
Requirements 

Analysis

Specify Software Requirements 
Determine Operating Environment Impact 
Evaluate/Validate Requirements with Customer 
Develop Validation Criteria for Software 
Develop Release Strategy 
Update Requirements 
Communicate Software Requirements 
Evaluate the Software Requirements 

Software 
Des i "ii

Develop Software Architectural Design 
Desien Interfaces 
Verify the Software Design 
Develop Detailed Design 
Establish Traceability 

Software 
Construction

Develop Software Units 
Develop Unit Verification Procedures 
Verify the Software Units 
Establish Traceability _______________ 

Software 
Integration

Develop Software Integration Strategy 
Develop Integrated Software Item Regression 
Strategy 
Develop Tests for lnteorated Software Items 
Test Integrated Software Items 
Integrate Software Item 
Regression_Test_Integrated_Software Items __________________ 

Software 
Testing 

__________________

Develop Integrated Software Test Strategy 
Develop Tests for Integrated Software 

Test Integrated Software 
Regress ion Test_Integrated_Software

Categorized in the five software engineering processes are 
27 practices (See Table 2) that identify the activities 
necessary to develop software in a consistent manner and 
with repeatable results. Each software project used for 
this research was evaluated in terms of these practices. A 
binary (yes/no) indicator of compliance with each practice 
was uted to quantify its software process maturity. 

3.3 Assessing Software Problem Complexity 

Software problem complexity is captured differently 
for each phase of the development life cycle. In the 
requirements phase, complexity is determined by 
assessing whether or not the functional needs of the 
customer have been addressed, and how frequently those 
needs change after baseline. In the design phase, the 
domplexity of the software problem can be characterized 
by the complexity of the design itself and the volatility of 
the design baseline. Complexity in the implementation 
phase is represented by the prevalence of quality 
requirements and needs in the software, and by the 
volatility of the source code units. Test complexity 
represents the extent to which the test covers the expected 
functionality of the product.

Tahl	 Software Problem Comnlexif' Factors 
Life Cycle Phase Software Complexity lndicaior 

Requirements
Has the expected functional operation of the 
software been descnbed? 
How volatile are the requirements? 

Design
How complex is the design of the software? 
How complex is the design of the interfaces? 
How volatile is the design? 

Implementation

How complex is the implemented software? 
How prevalent are quality needs in the 
implemented software? 
i-tow volatile is the implementation? 

Integration/Tess 
____________________

How well has the test covered the expected 
.	 - 

functionality? 

Table 3 summarizes the indicators used to represent the 
complexity of the software problem. This approach 
captures the breadth of expectations of the software 
product in terms of an accepted standard for software 
quality, and provides a quantification of the nature of the 
problem that is being solved with the development of the 
software product. Once the expectations for a project 
have been established, the fulfillment of those 
expectations may also be measured psing the same 
standard. 

3.4 Assessing Software Product Quality 

Software product quality in this research is captured 
using the ISO/IEC 9126 [11] as a guide for the 
expectations of quality within the delivered software 
product. The ISO/IEC 9126 is an international standard 
for software product quality that represents the quality of 
a delivered software product in terms of six major 
characteristics: Functionality, Efficiency, Reliability, 
Usability, Maintainability, and Portability. In the 
standard, each of the six quality characteristics is further 
partitioned into sub-characteristics and associated 
indicator metrics that allow for consistent measurement 
and assessment of quality. 

Tahie 4. Snftvvare Product Oiialitv Measures 

Metric Name	 Metric Description 

Functional Number of functional requirements present 
Adequacy and colTectly implemented in the software 

product. _________________________ 
Functional Number of functional requirements present 
Implementation in the software product. 
Completeness 
Functional

_________________________________________________ 
Number of functional requirements correctly 

Implementation implemented in the software product. 
Coverage __________________________________________ 
Functional Number of functional requirements 
Specification unchanged after requirements baseline. 
Stability __________________________________________



This research has focused on capturing and modeling 
product quality in temis of the Suitability of the product. 
Suitability refers to the adequacy of the software product 
in terms of its coverage of user needs and correctness of 
implementation. Table 4 lists the metrics used to capture 
software product quality for the Suitability portion of the 
ISO/IEC 9126 standard. All of the software product 
quality metrics are represented in terms of the number of 
needs or requirements that were verified to be colTectly 
implemented. This implies correctness and completeness 
in the capture of the customer's needs during all of the life 
cycle phases. 

4. Software Quality Model Structure 

Modeling the various quality metrics was 
accomplished by representing the cause-effect diagram 
shown in Figure 1 in a Bayesian Belief Network. The 
same general approach was used for each of the software 
quality metrics. For each quality metric, the structure of 
the model attempts to take into account the correctness 
and completeness of the activities associated with each of 
the four software development life cycle phases. Figure 3 
below describes the approach in terms of a BBN. 

Desiqn	 '	 1 Implementation 
Corre.ctness/	 Correctnesai 

Coiripleteneac )	 Completeriecs 

Requirementa '., 	 \	 /	 ./	 Test 
Correctneczi	 /	 Correctnessi 

Ccrni:' lete.riecs ,/	 /	 , Complete.necc 

Quality Ivietric 

Figure 3. Bayesian Network for Modeling a Quality 
Metric 

These indicators of correctness and completeness are 
fed by the drivers of software quality: development team 
capability, process maturity, and problem complexity. 
Figure 4 depicts the generic model structure that is 
applied for each software product quality indicator. The 
correctness of each phase is represented by variables that 
indicate the amount of change associated with the phase 
artifacts, and the proportion of requirements, design 
modules, etc. that were verified to have been implemented

correctly. The completeness of each phase is represented 
by variables that indicate the degree to which the user 
needs, requirements, or design was addressed in the 
phase.

Phase Process

Maturity 

Phase. Team ' 	 (	 Phase 
Cap;ahility	 I	 Complexity 

Phase CorrectriessI

Completeness. 

Figure 4. Bayesian Network for Modeling Phase 
Correctness and Completeness 

5. Software Quality Model Validation 

The approach taken to validate the software quality 
model is to make statistical inferences about the accuracy 
of the model when making predictions about software 
product quality. 

5.1 Data Description 

The sets of data used to train and validate this 
software quality model are from 21 software development 
projects. The projects were small in scale, and were 
generally completed within a 3-4 month time frame. 
Project teams varied in size from 1 to 4 developers and 
included both graduate students and software engineering 
professionals. Projects were required to sequentially 
address each phase of the development life cycle in a 
classic "waterfall" fashion. 

Each project was asked to track various software 
engineering metrics through the development life cycle. 
These metric were reported at the conclusion of each 
phase. Of the original 28 projects selected to participate 
in this research, 21 were actually used because of their 
willingness to track life cycle measures completely and 
correctly.



5.2 Validation Approach 

The proposed software quality model was validated 
in terms of its predictive accuracy. The approach to 
validation was to evaluate the predicted values of the 
selected software quality metrics at the conclusion of the 
software design phase with the actual values of those 
metrics at delivery of the software product. A validation 
run was performed for each of the 21 participating 
projects. In each validation run, the model was trained 
using all but one of the available data sets. The unused 
data set served as the data set for which the model made 
predictions about the various software quality measures. 
The predictions were recorded along with the actual 
software quality values for that data set. This process was 
repeated for each of the available data sets. The resultant 
data is a collection of expected versus actual values for 
each of the software quality measures being validated. 

The statistical method for validation is a hypothesis 
test for equality of means between expected and actual 
values for each software quality metric. In this case, the 
null hypothesis is that the means are equal, and the 
alternative hypothesis is that they are different. The 
decision rule for the hypothesis test is shown below: 

	

H0 : l-tniode led	 l-tactual	 0 
'4. 

	

a . Pmodcicd	 Pactuai 

Reject H0 if: 

/'acwa/ - /tniod c/ed 

insE * (2 / /
2) j <t,,_Va/2 

where, 
l.tn,odcled the niean value of the modeled variable 

Pactusi = the mean value of the actual variable 
msE = the mean square error 
n = the total number of samples 
v = die number of degrees of freedom 
tn V a12 = t-distribution for confidence (l-a)l00%

If die test statistic for the given quality measure exceeds 
the t-distribution value for that quality nieasure, then the 
null hypothesis must be rejected. For this study, a 
confidence of n = 0.9, or 90% was used for all statistical 
calculations. In addition to the contrasted nieans, the 
sample size required to make an inference on the 
contrasted means is reported. This insures that the sample 
sizes are sufficient to make a statistical inference.

5.3 Results 

The developed software quality model performed 
well in predicting for the four nieasures of suitability. 
Table 5 contains the results from applying the hypothesis 
test to determine whether or not the modeled values for 
the software suitability metrics assunied the same 
distribution as the actual values for those metrics. For all 
of the metrics, the sample sizes were found to be 
sufficient when compared to the sample sizes needed for 
significance. The means and variances are of both the 
modeled values and actual values are listed in the table, 
and appear consistent upon visual comparison. In the case 
of all four metrics, the calculated Test Statistic is less than 
the t-distribution value. The null hypothesis may 
therefore be accepted, that there is 90% confidence that 
the niean of the modeled values is equivalent to the niean 
of the actual values for all four indicators of software 
product suitability. 

Table 5. Model Results for Suitability Metrics 
a, Modeled Value Actual Value 55 

(05/) = 

Oualily Metric , ci 
,uflclipnal 

dequacy 21 11 24.429 222.113 25.714 246.109 0.141 1.684 Yes 

runcasnal 

Implemenlalion 

completeness 21 11 25.062 212.601 26.381 235.569 0.143 1.684 Yes 

Functional 

Implementation 

Coverage 21 11 23.905 231.297 25.714 246.109 0.199 1.684 Yes 
rUllUlLilial 

Speci9calion 

Volatility 21 .20 2.105 23.460 5.667 92.032 1.299 1.684 Yes

6. Conclusions and Future Work 

This research gives evidence that the proposed model 
can provide reliable predictions of software quality in 
terms of the metrics associated with the suitability of the 
software. While these results are encouraging, their 
validity will continue to be investigated through further 
data collection. In particular, it is hoped that niore 
diverse software engineering projects, in terms of project 
scale and scope of quality, may be included. In addition, 
this research is planiied to be expanded to include all of 
the software product quality sub-characteristics detailed in 
the ISO/lEO 9126 software product quality standard. 



7 Acknowledgements 

The authors would like to acknowledge the National 
Aeronautics and Space Administration at Kennedy Space 
Center for providing the resources to pursue this research. 

8. References 

[1] B. Kitchenharn and S.L. Puleeger, "Software Quality: The 
Elusive Target", IEEE Software, Volume 13, Issue 1, January 
1996, pp. 12-21. 
[2] N.E. Fenton and M. Neil, "A critique of software defect 
prediction models", IEEE Transactions on Software 
Engineering, Volume 25, IssueS, September-October 1999, pp. 
675-689. 
[3] N. Fenton, P. Krause, and M. Neil, "Software Measurement: 
Uncertainty and Causal Modeling", IEEE Software, Volume 9, 
Issue 4, July-August 2002, pp. 116-122. 
[4] S. Chulani, B. Boehm, and B. Steece, "Bayesian analysis of 
empirical software engineering cost models", IEEE Transactions 
on Software Engineering, Volume 25, Issue 4, July-August 
1999, pp. 573-583. 
[5] B. Cukic and D. Chakravarthy, "Bayesian framework for 
reliability assurance of a deployed safety critical system", Fifth 
IEEE International Symposium on High Assurance Systems 
Engineering, 15-17 November 2000, pp. 321-329. 
[6] S.H. Kan, Metrics and Models in Software Quality 
Engineering, Addison-Wesley, Reading, MA, 1995. 
[7] ISO/IEC, Information Technology, Soft ware Process 
Assessment, Part 1, ISO/lEG Technical Report 15504-1, 1998. 
[8] ISO/lEG, Information Technology, Software Quality, Part I, 
ISO/lEG Standard 9126, 1995. 
[9] \'.R. Basili, L.C. Braind, and W.C. Melo, "A Validation of 
Object-Oriented Design Metrics as Quality Indicators", JEEE 
Transactions on Software Engineering, Volume 22, Issue 10, 
October I 996, pp. 751-760. 
[10] R. Subramanyam and M.S. Krishnan, "Empirical Analysis 
of CK Metrics for Object-Oriented Design Complexity: 
Implications for Software Defects", IEEE Transactions on 
Software Engineering, Volume 29, Issue 4, April 2003, pp. 297-
310. 
[II] T.M. Khoshgaftaar, J.C. Munson, B.B. Bhattacharya, and 
GD. Richardson, "Predictive Modeling Techniques of Software 
Quality from Software Measures", IEEE Transactions on 
Software Engineering, Volume 18, Issue 11, November 1992, 

pp. 979-987.


	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8

