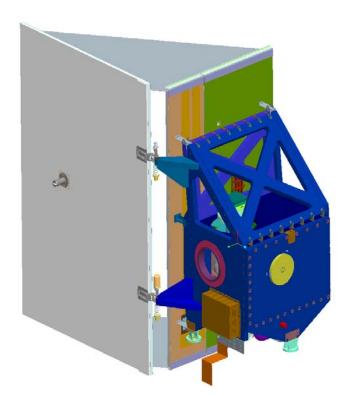
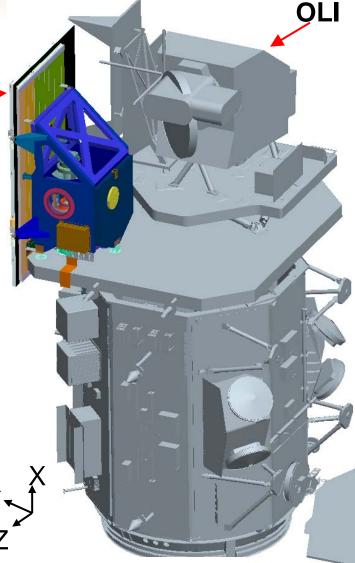


In-flight calibration of the Thermal Infrared Sensor (TIRS) on the Landsat Data Continuity Mission

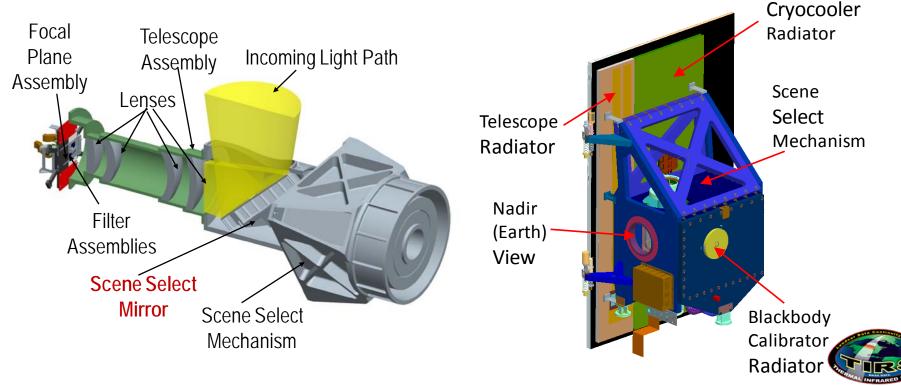

K. Thome¹, D. Reuter¹, M. Montanaro², S. Hook³, B. Markham¹

Outline

Describe in-flight calibration for the Thermal Infrared Sensor (TIRS)


- Overview of TIRS
- On-orbit radiometric calibration
 - Onboard calibrator
 - Terrestrial sites
- On-orbit geometric and spatial calibration

LDCM overview

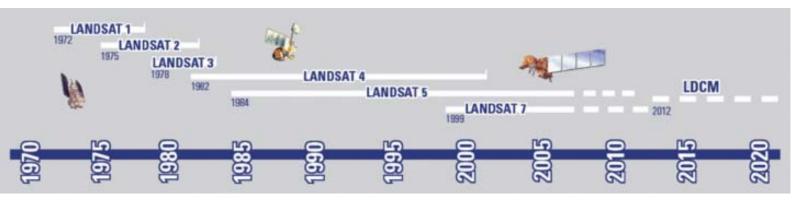

- Landsat Data Continuity Mission continues Landsat data history
- TIRS operates in concert with but independent of Operational Land Imager
- Will produce radiometricallycalibrated, geo-located data
- United States Geological Survey/ Earth Resources Observation and Science (EROS) facility developing operational algorithms
- On orbit calibration plays key role Z in merging OLI and TIRS data in single data stream

TIRS Overview

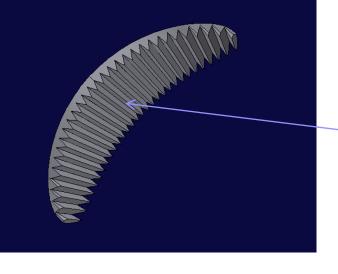
- Dual band, pushbroom system with 185-km swath width and 100-m spatial resolution
- Quantum well infrared photodetector (QWIP)
- 10.8 μm and 12 μm
- Scene-select mirror allows for nadir views of earth as well as views of deep space and onboard blackbody

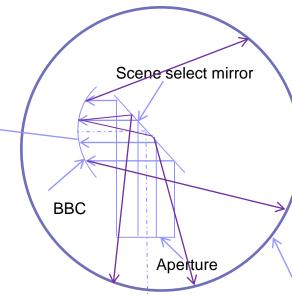
On orbit calibration

On-orbit testing will follow past efforts for similar sensors


- Verify sensor calibration and performance on orbit
- Evaluate onboard calibrator performance
- On-board blackbody is primary path to derive onorbit radiometric calibration
- Intercomparison with ETM+ and other sensors
- Geometric approaches
 - Cold deserts for OLI to TIRS registration
 - Hot spots for band-to-band registration
 - OLI comparison
 - Lunar views (recovery time, ghosting)

On-orbit calibration of TIRS

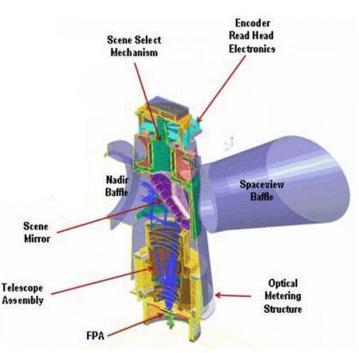

An important goal of TIRS is to place this sensor in context with past, present, & future sensors


- Radiometric calibration allows TIRS to continue a long history of Landsat sensors
 - Consistency with Landat-7 ETM+ and Landsat-5 TM
 - Putting TIRS on the same radiometric scale as other earth resources sensors
- NIST traceability will allow TIRS data to be on the same scale as follow-on Landsat missions

Onboard Blackbody (OBB)

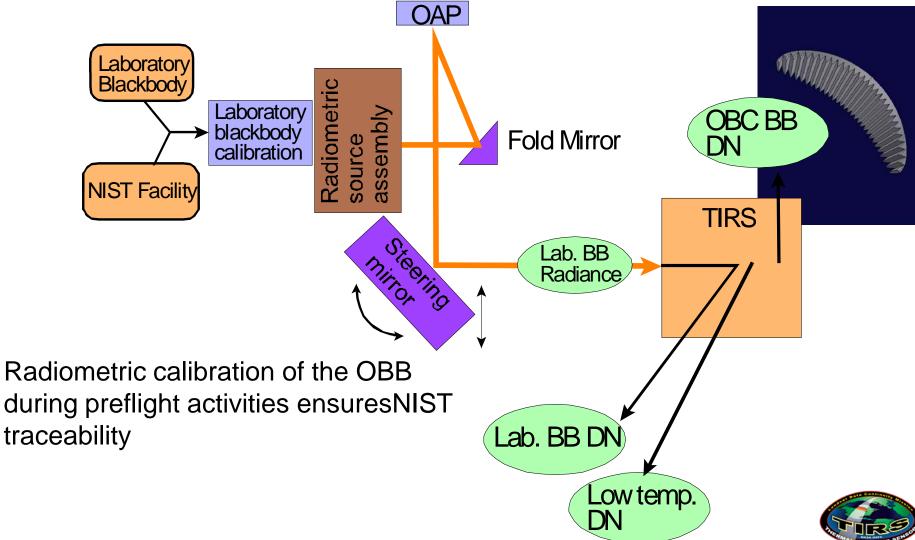
- OBB has similar design to that used for Moderate Resolution Imaging Spectroradiometer (MODIS)
- V-groove, "flat" plate
 - OBB surface property: 92% absorption and 8% reflection
 - Reflection is specular
- Variable temperature

Optical modeling used to predict emissivity performance


Incident light in blue Reflected light in purple

Onboard calibrator (OBB)

Scene-select mirror provides views to nadir (earth), space, and an on-board blackbody


- Nominal operation approach is
 - View deep space and OBB as sensor comes out of eclipse
 - Nadir view of earth for imaging
 - Repeat deep space and OBB as sensor goes into eclipse
- Frequency of OBB views can be increased if needed
- Temperature of OBB can be varied between collects

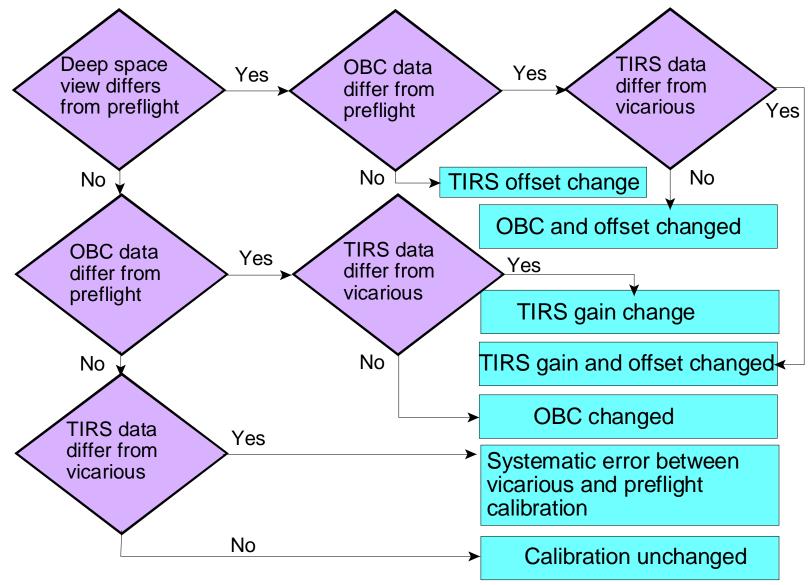
Onboard blackbody characterization

Onboard blackbody (OBB) is calibrated using TIRS as a transfer

Transfer to orbit

On-orbit testing will evaluate sensor calibration and noise performance on orbit

- Evaluate onboard calibrator performance
- Radiometric approaches
 - Intercomparison with ETM+
 - Ground sites
 - Intersensor comparisons
- Geometric approaches
 - Band-to-band registration
 - OLI comparison
 - Lunar approaches
- Three-month commissioning and checkout phase
 - Schedule is still under development
 - Transfer to orbit of calibration is one component


Transfer to orbit

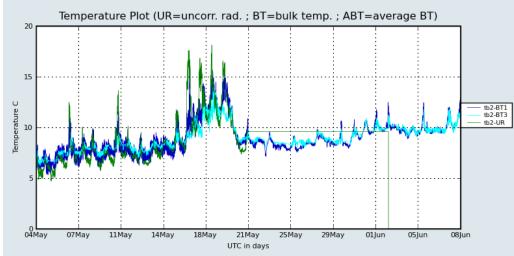
Transfer to orbit will take place during the first 90 days of TIRS operation

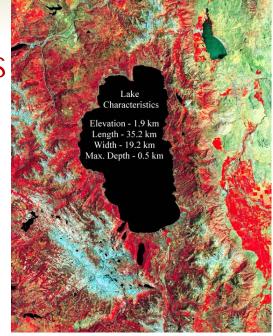
- Rely on combination of deep space views, OBB collections, and vicarious calibration data
- Validate radiometric sensitivity model
- Characterize variations in detector responsivity over 2 instrument out gassing (decontamination) cycles
- Identify dead, inoperable, and out-of-spec detectors for each band
- Compare prelaunch to on orbit data
 - Deep space views
 - OBB
- ETM+ comparisons with common targets and maximum 20 minute time delay

Transfer to orbit

Vicarious radiometric calibration

Well established vicarious approaches planned for TIRS evaluation

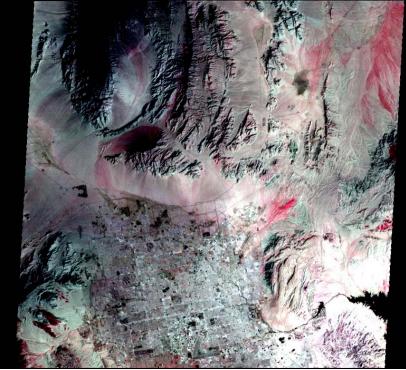

- Well-understood ground scenes
 - Simultaneous nadir overpass (SNO) approach
 - Melt ponds
 - Sea-surface temperature retrievals
- Characterized ground scenes
 - Lake Tahoe
 - Lake Ontario
 - Salton Sea
- Cross comparisons with other sensors
 - MODIS/VIIRS
 - GOES



Ground sites

Concentrate on instrumented sites accessible in N.H. winter

- Lake Tahoe and Salton Sea shown to work well for ETM+ and TM
- Measure water leaving radiance
- Measure bulk temperature
- Characterize the atmosphere
- Predict at-sensor radiance



On-orbit Geometric calibration

Characterize instrument to Attitude Determination System Reference alignment

- Characterize detector arrays lines of sight
 - Relative band to band
 - Relative to reflective bands
- Ground scenes
 - Cold deserts for OLI to TIRS registration
 - Hot spots for band-toband
- Verify spatial characteristics via linear features

Lunar views

OLI is scheduled to use the moon for radiometric calibration

- Platform maneuver required to do so
 - Monthly basis but more frequently during check out
 - TIRS will also view the moon during the same maneuvers
- Moon is high-temperature source
- Examine data related to
 - Stray light
 - Ghosting
 - Validate recovery time to return to nominal image performance

Summary

On-orbit calibration of TIRS will place it in context with past, present, & future sensors

- Effort builds on successful approaches developed for Landsat-5 TM and Landsat-7 ETM+
 - Result of long-term partnership between NASA
 and USGS and university collaborations
 - Past effort demonstrates that the required 2% accuracy is readily achievable with TIRS
- 90-day commissioning phase will be the key to the transfer to orbit of prelaunch calibration
 - NIST traceable
 - Geometric and radiometric characterizations
 - Cross-calibration to currently flying sensors

