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POPULAR SUMMARY 

The separation of cloud and clear scenes is usually one of the first steps in 

satellite data analysis. Before deriving a geophysical product, almost every satellite 

mission requires a cloud mask to label a scene as either clear or cloudy through a cloud 

detection procedure. For clear scenes, products such as surface properties may be 

retrieved; for cloudy scenes, scientist can focus on studying the cloud properties. Hence 

the quality of cloud detection directly affects the quality of most satellite operational and 

research products. This is certainly true for the Ice, Cloud, and land Elevation Satellite-2 

(lCESat-2), which is the successor to the ICESat-l. As a top priority mission, ICESat-2 

will continue to provide measurements of ice sheets and sea ice elevation on a global 

scale. Studies have shown that clouds can significantly affect the accuracy of the 

retrieved results. For example, some of the photons (a photon is a basic unit of light) in 

the laser beam will be scattered by cloud particles on its way. So instead of traveling in a 

straight line, these photons are scattered sideways and have traveled a longer path. This 

will result in biases in ice sheet elevation measurements. Hence cloud screening must be 

done and be done accurately before the retrievals. 

Usually, a space-borne lidar system such as ICESat-l, has the advantage of 

accurately measuring atmospheric layer heights; hence their cloud detection can generally 

be achieved by examining the layer information. However, unlike ICESat-l, which has 

an atmosphere channel for cloud and aerosol detection, the ICESat-2 mission utilizes a 

low pulse energy laser. So the returning signal is relatively weak. At night, good 

performance on atmospheric layer detection can be expected through signal averaging. 

During daytime, however, the signal to noise ratio will be especially low due to the solar 



background noise. Under this situation, the ability of ICESat-2 in detecting atmospheric 

layers is limited. 

Luckily, ICESat-2 can measure a quantity called apparent surface reflectance, 

which represents the part of the laser energy that passes through the atmosphere, reaches 

the surface and is reflected back to the satellite. If there were nothing between the 

satellite and the ground, the apparent surface reflectance would be the real surface 

reflectance. However, since the laser beam has to pass through the atmosphere (some of 

the photons will be lost during the process), the value of the apparent reflectance is 

always lower than the real surface reflectance. When clouds are present, the apparent 

surface reflectance will be even lower. Based on this fact, this paper proposes to use 

apparent surface reflectance for cloud screening in support of the ICESat-2 mission. The 

basis of this method is that clouds produce a strong signal by significantly decreasing 

surface apparent reflectance. We show that depending on the properties of the cloud, 

apparent surface reflectance decreases 8% - 17% for clouds with an optical depth of 0.1 

(optical depth is a measure of transparency. The larger it is, the less transparent it 

becomes) and 57% - 85% for clouds with an optical depth 1.0. Data from ICESat-1 are 

used to demonstrate the feasibility of the method. It is shown that cloud detectability is a 

function of surface variability. Generally, the smaller the surface variability, the more 

accurate is cloud detection. Unlike ICESat-1, which used a 1064 nm laser, ICESat-2 

adopts a 532 nm laser system. With both modeling studies and results from the Moderate 

Resolution Imaging Spectroradiometer (MODIS), we demonstrate that the variability in 

apparent surface reflectance is much smaller at the 532 nm wavelength than that at the 

1064 nm. Hence cloud detection with this method will be better for ICESat-2 than for 

ICESat-l. 

ICESat-2 is scheduled for launch in 2016. Once enough ICESat-2 data are 

accumulated, a threshold data set can be easily developed and this method can be readily 

applied for cloud screening. 
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Abstract 

Cloud detection/screening is a fundamental step in satellite data analysis. For the 

Ice, Cloud, and land Elevation Satellite (ICESat) and its successor ICESat-2, clouds can 

significantly affect the accuracy of the surface elevation retrievals. This paper proposes a 

new method for cloud screening in support of the ICESat-2 mission with focus on the 

polar ice sheet regions. The method utilizes the apparent surface reflectance at the 

backscattering direction as the cloud screening test. The basis of this method is that 

clouds produce a strong signal by significantly decreasing surface apparent reflectance. 

We show that depending on the height and microphysics of the cloud, apparent surface 

reflectance decreases 8% - 17% for clouds with an optical depth of 0.1 and 57% - 85% 

for clouds with an optical depth 1.0. Data from ICESat's 1064 nm channel is used to 

demonstrate the feasibility of the method. It is shown that cloud detectability is a function 

of surface variability. Generally, the smaller the surface variability, the more accurate is 

cloud detection. Unlike ICESat, which used a 1064 nm laser, ICESat-2 adopts a 532 nm 

photon counting system for its laser altimeter. With both modeling studies and results 

from the Moderate Resolution Imaging Spectroradiometer (MODIS), we demonstrate that 

the variability in apparent surface reflectance is much smaller for the 532 nm channel 

than that for the 1064 nm channel. Hence the 532 nm channel is better suited for cloud 

screening than the 1064 nm channel. 
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I. Introduction 

The separation of cloud and clear scenes is usually one of the first steps in 

satellite data analysis. Before retrieving a geophysical product, almost every satellite 

mission requires a cloud mask to label pixels as either clear or cloudy through a cloud 

detection procedure (e.g. [1][2][3][4]). The quality of cloud detection directly affects the 

quality of most satellite operational and research products. 

The importance of cloud detection and screening is also true for the Ice, Cloud, 

and land Elevation Satellite (ICESat) and its successor ICESat-2 [5]. Launched in 2003, 

ICESat was designed to obtain accurate surface elevation measurements on a global scale 

[6]. Onboard ICESat was the Geoscience Laser Altimeter System (GLAS), which utilized 

a 1064 nm lidar with analog detection to obtain the elevation of the underlying terrain. 

Studies have shown that clouds can significantly affect the retrieved altimetry. Forward 

scattering by cloud particles increases the photon path length, thus resulting in biases in 

ice sheet elevation measurements known as atmospheric path delay [7][8][9]. Similar to 

ICESat, ICESat-2 will continue the global surface elevation measurements with high 

accuracy, especially over the ice sheets [10]. Compared to ICESat, the significantly 

improved design of ICESat-2 employees a 532 nm photon counting lidar system with 

single photon detectability. As shown in [11], the ICESat-2 surface altimetry will also be 

affected by clouds and cloud screening must be done before the retrievals. 

Compared to passive remote sensing instruments, space-borne lidars have the 

advantage of accurately measuring layer heights; hence their cloud detection can 

generally be achieved by examining the layer information. Examples of using this 
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method include the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations 

(CALIPSO) [12] and the ICESat mission [5]. However, unlike ICESat, which has an 

atmosphere channel for cloud and aerosol detection, the ICESat-2 mission utilizes a high 

repetition rate, low pulse energy laser. At night, good performance on atmospheric layer 

detection can be expected through signal averaging. During daytime, however, the signal 

to noise ratio will be especially low due to the solar background noise [5]. Under this 

situation, the ability of ICESat-2 in detecting atmospheric layers is limited. 

For ICESat and ICESat-2, a bidirectional reflectance factor (BRF) value at the 

backscattering direction with nadir illumination can be derived from the energy received 

within the surface range gate. This value is called apparent surface reflectance because it 

is the product of the two-way transmittance of the atmosphere and the true surface BRF 

[13][14]. We note that the CALIPSO lidar is not suitable for deriving apparent surface 

reflectance over the ice sheets, because the surface return would saturate the detectors 

under clear sky or thin cloud situations. Carabajal et al. [14] demonstrated how the 

information of apparent surface reflectance could be used to constrain a laser altimeter 

mission design. In this paper, we investigate the potential of apparent surface reflectance 

in cloud screening over polar ice sheets for the ICESat-2 mission. The remainder of the 

paper is organized as follows: Section II introduces the rationale of using apparent 

surface reflectance as a cloud screening test; in Section III, we examine the impact of 

surface variability on cloud detectability; Section IV uses the ICESat data to demonstrate 

the potential of this method in cloud detection; In Section V, modeling and the Moderate 

Resolution Imaging Spectroradiometer (MODIS) observations are used to show the 
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apparent surface reflectance differences in the 1064 nm and 532 nm channels. Results are 

summarized in Section VI. 

II. Cloud Impact On Lidar Surface Returns 

Like most remote sensing instruments, the detectors onboard ICESat and ICESat-

2 measure the reflected energy into a particular angle. However, unlike passive remote 

sensing sensors, ICESat and ICESat-2 have time-dependent information and can measure 

the energy that is reflected by the surface only and reaches the detectors; hence the 

apparent surface reflectance can be calculated. Similar to the definition of the BRF, the 

apparent surface reflectance is defined as (e.g. [15]): 

(1) 

where L is the radiance at the sensor resulted from the photons reflected by the 

surface; ~o and ~ are the cosine of illumination zenith angle and view zenith angle, 

respectively; cp is the relative azimuth angle; Eemit is the emitted laser energy. Here, /-lo = 

f1 = 1. o. It is easy to see that Papp is the ratio between the measured radiance L and that of 

a perfect Lambertian reflector (i.e. albedo = 1); hence for a surface with a high albedo, 

such as fresh snow or ice, Papp can be larger than 1. For ICESat and ICESat-2, the 

radiance L at the sensor can be expressed as: 

E rec ITopt 
L= 2 

Atelescope I R 
(2) 
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where Erec is the energy that reaches the detectors from the range gate that 

contains the object (e.g. the surface); Topt is the transmission of the optics; Atelescope is area 

of the telescope and R is the distance between the satellite and the surface. Combine Eq. 

(2) with (1), the apparent reflectance Papp can be derived as [13][14]: 

rtE rec
R2 

(3) 
Papp = EAT 

emit telescope opt 

F or a given surface and laser system, clouds lower the returning energy that is 

reflected by the surface (Erec); hence lower the apparent surface reflectance. Evidently, 

when clouds are present, apparent surface reflectance is a function of cloud optical depth 

(COD), cloud height and cloud microphysical properties. Fig. 1 illustrates how cloud 

properties affect apparent surface reflectance. The black and gray curves are results of 

radiative transfer calculations with a 3D Monte Carlo model (validated by the 

International 3D Radiation Code (I3RC) project [16]). Normalized by the clear sky 

apparent surface reflectance, the results shown represent the two-way transmittance of the 

atmosphere. For example, a cloud with COD = 0.1 decreases the surface return by about 

8% to 17%; while a cloud with COD = 1.0 decreases the surface return by 57% to 85%. 

The variability in surface return for a given COD is due to the variability in cloud altitude 

and microphysics. Fig. 1 a shows that the lower the cloud, the higher is the apparent 

surface reflectance. This is due to the fact that for lower clouds, photons that experienced 

multiple scattering have a larger chance to stay in the telescope field of view [9]. 

Similarly, as shown in Fig 1 b, everything being equal, the larger the particle size, the 

higher is the apparent surface reflectance. This is because of their larger forward 

scattering; hence more photons tend to stay in the FOV. 
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The analytical approximations are also shown in Fig 1 with the color curves. For a 

cloud of optical depth 't, the probability of photons being scattered once and twice are 

't
2 

'te-'t and -e-", respectively (e.g., [7] and [24]). Weighting these quantities with the 
2 

probability of being scattered into a small forward angle (which is 112, based on the 

diffraction theory) leads to the following simple approximations for the two-way 

transmittance when zero, first and second scattering orders are taken into account, 

respectively: 

(4) 

(5) 

(6) 

Obviously, as an approximation, the analytical results do not depend on cloud 

height, geometrical thickness, microphysics or the telescope FOV, but compared to the 

time consuming Monte Carlo simulations, when up to second order scatterings are 

accounted, the analytical approximations provide reasonable accuracy with minimal 

computational effort. Overall, to summarize the results of Fig. 1, clouds provide a strong 

signal in apparent surface reflectance that can be used for cloud detection. 

III. Apparent Surface Reflectance Distribution And Cloud Detectability 

Section II shows that clouds can significantly reduce apparent surface reflectance 

measured by the ICESat-2 detectors; hence it is possible to set a threshold to separate 

cloudy and clear conditions. However, if surface reflectivity varies significantly from 

location to location, cloud detectability will be lower compared to an otherwise uniform 
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surface. To show this, we first examine how apparent surface reflectance varies under 

clear sky conditions over the ice sheets. Fig. 2a gives the results over Greenland, East and 

West Antarctica. Data are from the GLAS L2A campaign that began on 25 September 

and lasted until 19 November, 2003 [17]. All data for which clouds were detected have 

been removed. We selected the L2A campaign because during this period the GLAS had 

a fully functional atmosphere channel and the best cloud detection ability [18]. As 

mentioned before, the apparent surface reflectance was derived from the 1064 nm 

channel measurement. Since aerosols are generally optically thin and Rayleigh scattering 

is negligible at the 1064 nm, the apparent surface reflectance under clear sky is very close 

to the surface BRF and its distribution represents the variability of the surface reflectivity. 

It can be seen from the figure that the mode of the distribution from the Greenland ice 

sheet is lower than that of the Antarctica regions, with the highest from the East 

Antarctica. As explained in Section II, notice that some of the apparent reflectance values 

are larger than one. 

The distributions shown in Fig. 2a resemble a bell shape (Gaussian). To better 

illustrate the impact of surface variability on cloud detection, we first fit the clear sky 

distributions with a Gaussian function. The best fit for the distributions of Greenland, 

East and West Antarctica regions has a mean of 0.87, 0.91 and 0.89 and a standard 

deviation of 0.07, 0.07 and 0.06, respectively. Fig. 2b uses the Gaussian fit to the East 

Antarctica distribution (solid black line) as an idealized apparent surface reflectance of 

snow cover under clear sky conditions. When clouds are present, the apparent reflectance 

will be smaller. Ifwe assume cloud is a plane parallel layer, the shape of the distribution 

curve will not change; only the mean becomes smaller. The result is that the entire curve 
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is shifted to the left. The size of the shift is a function of the cloud properties. For 

example, based on the radiative transfer simulations conducted in Section II, for a cloud 

at 0.5 to 1.0 km with MODIS ice phase function for re = 20 Jlm, apparent reflectance 

would decrease by 10% for COD = 0.1 and 41 % for COD = 0.5. This example is plotted 

in Fig. 2b with the dashed lines. 

As can be seen in Fig. 2b, there is an overlap between the apparent reflectance 

distributions for clear sky and for cloudy sky (e.g. the curve for COD = 0.1). Hence it is 

no longer possible to completely separate clear and cloudy pixels with a single threshold 

[19]: no matter where the threshold is set, some of the pixels will be misclassified. 

Generally, a smaller standard deviation would indicate less overlap between the 

distributions under clear and cloudy sky conditions; hence better cloud detection. Fig. 2b 

and 2c demonstrate this point. The Gaussian distributions for clear sky in both panels 

have the same mean (0.91), yet their standard deviations are different, one is 0.07 (Fig. 

2b) and the other 0.03 (Fig 2c). As can be seen, the case with smaller standard deviation 

(Fig. 2c) corresponds to a smaller overlap, thus better cloud detection. 

Evidently, for a given distribution of apparent surface reflectance, the 

misclassification rate is a function of the threshold and cloud optical depth. Fig. 3 shows 

the results for the cases used in Fig. 2b and Fig. 2c. For example, for the case with 

standard deviation of 0.07 (Fig. 3a), if the threshold is set at 0.86, 28% of the clouds with 

COD = 0.1 will be misclassified as clear; the number drops to 6% and 0.5% for COD = 

0.2 and 0.3, respectively; the misclassification for clouds thicker than 0.2 is essentially 

negligible. Also, part of the clear pixels (23%) is misclassified as cloudy. For the case 

with standard deviation of 0.03 (Fig 3b), the same threshold would result in 8% of the 
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clouds with COD = 0.1 being misclassified as cloudy and misclassification for optically 

thicker clouds are negligible. The misclassification for clear pixels is about 5%. 

IV. Applications To the ICESat Data 

In this section, we apply the apparent surface reflectance cloud detection method 

to I CESat data to investigate its feasibility. Again, the 1064 nm channel data from the 

GLAS L2A campaign is used. As mentioned in the previous section, for the L2A 

campaign, accurate cloud detection was achieved from the atmospheric channel; hence 

we know the "truth" of which pixel is clear and which one is cloudy. The apparent 

surface reflectance distributions under clear and cloudy sky conditions are built from all 

the clear and cloudy pixels, respectively. 

Fig. 4 shows the results for West Antarctica. As shown in the figure, an overlap 

exists between the distributions for clear and cloudy sky conditions; hence no threshold 

could separate all the clear pixels from the cloudy ones. Actually, as pointed out in [19], 

for a threshold to work perfectly, the histogram of all the pixels has to be discontinuous, 

with clear pixels on one side and cloudy pixels on the other, yet this type of histogram 

has never been observed in satellite remote sensing. The bimodal distribution shown in 

Fig. 4 indicates that apparent reflectance is a good test for cloud detection because 

misclassification can be minimized by putting the threshold in the valley region of the 

histogram [4]. A sample threshold of 0.7 is marked on Fig. 4. With this threshold, 15% of 

the clear pixels are misclassified as cloudy and 8% of the cloudy misclassified as clear. 

Certainly the threshold can be adjusted to make the results either more cloud or clear 

conservative. As will be discussed in Section V, for the ICESat-2 mission, the 532 nm 
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laser will be used and cloud detectability will be strongly enhanced with the apparent 

reflectance method. 

v. Apparent Surface Reflectance at the 532 nm Wavelength 

The observations shown in Section III and IV are all from ICESat's 1064 nm 

lidar. Since ICESat-2 will make measurements at the 532 nm, it would be more 

instructive to look at how apparent surface reflectance behaves at this wavelength. 

However, at 532 nm, direct laser measurements on surface reflectance over the ice sheets 

are rare. As mentioned above, space-borne lidars designed for atmospheric 

measurements, such as the one onboard CALIPSO and the ICESat atmospheric channel 

lidar, are not suitable for this purpose, because the surface signal saturates the detectors 

when the scene is clear or covered with optically thin clouds. 

Since we need data for nadir illumination to investigate the problem, most passive 

remote sensing instruments are not helpful either because of the low solar angle over the 

Polar regions, even though they may have the 532 nm channel. However, the MODIS 

surface Bidirectional Reflectance Distribution Function (BRDF) model parameters 

product may shed some light on this issue. The product is derived based on a kernel­

driven semi-empirical model that uses the RossThick-LiSparse kernel functions at a 

spatial resolution of 1 km by inverting MODIS observations in a 16-day period (Baseline 

inversion occurs at 500m resolution; the 1 km resolution product is an average of the 

underlying 500m data. For details, see [20]). The time interval for the product is eight 
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days. The surface BRF with nadir illumination and nadir view angle can be calculated 

with the parameters provided [20]. 

Fig. 5a shows the surface BRF distributions with nadir illumination and nadir 

view angle for four MODIS channels at the 469 nm, 555 nm, 645 nm and 858.5 nm 

wavelengths. The 555 nm channel is fairly close to the 532 nm channel, but 

unfortunately, MODIS does not have the 1064 nm channel. The closest approximation is 

the 858.5 nm channel. As can be seen from the figure, for these channels, the shorter the 

wavelengths, the larger the BRF values. Fig. 5b compares the mean and standard 

deviation of the BRF of the 858.5 nm and the 555 nm channels for each of the 16-day 

periods during the winter months of 2008. As shown in the figure, not only is the BRF of 

the green channel larger (0.95 - 097 at the 555 nm vs. 0.84 - 0.88 at the 858.5 nm), the 

magnitudes of its standard deviation is also substantially lower (0.011 0.017 at the 555 

nm vs 0.018 - 0.025 at the 858.5 nm). As a result, cloud detectability will be better with 

the 555 nm channel. 

Another way of looking at how 532 nm channel values would differ from the 

1064 nm channel values is to convert the ICESat 1064 nm observations to 532 nm values 

through radiative transfer modeling. Here we adopt the analytical asymptotic radiative 

transfer (AAR T) snow model developed by Kokhanovsky and Zege [21], in which 

surface BRF can be approximated as: 

BRF(/-lo,/-l,CP) = Ro(/-lo,/-l,cp)exp( -A(/-lo,/-l,cp)-{yd) 

A(/-lo,/-l,Cp) s: 0.66(1 + 2/-lo)(1 + 2/-l)1 Ro(/-lo,/-l,CP) 

y = 4rtX/A 

(7) 

(8) 

(9) 
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where !-to and!-t are the cosine of illumination zenith angle and view zenith angle; cp is the 

relative azimuth angle; A is the wavelength; X is imaginary part of the refractive index 

and Ro is the radiative transfer solution of BRF for semi-infinite media with no 

absorption. In this study Ro is calculated with the model developed by Mishchenko et al. 

[22]. 

Since aerosols are generally optically thin over ice sheets and Rayleigh scattering 

is negligible at 1064 nm, the apparent surface reflectance at this wavelength can be 

considered as virtually the same as the surface BRF. Therefore to obtain the apparent 

surface reflectance at 532 nm, we first convert the 1064 nm ICESat observations 

(surrogate surface BRFs) to the 532 nm values with the AART model by assuming the 

variability is only caused by snow grain size. Warren et al. [23] summarized the factors 

that affect snow surface BRDF, which are: snow grain size, single scattering phase 

function, illumination zenith angle, absorption coefficient (a function of wavelength), and 

surface roughness. For the problem we are looking at, the illumination angle and the 

absorption coefficient do not change. Particle phase function is determined by particle 

size and shape, but mostly particle size. Surface roughness does change from place to 

place, but as pointed out by Warren et al. [23], for nadir illumination, its effect is less 

significant compared to oblique sun angles. Hence the assumption that surface BRF 

variability is caused by snow grain size can be adopted as a first order approximation. 

After obtaining the modeled surface BRF, the apparent reflectance (top of atmosphere 

BRF) is calculated by taking into account of the Ray leigh scattering, which is much more 

significant at the 532 nm than at the 1064 nm wavelength. 
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Fig. 6 compares the modeled 532 run BRF distribution with the 1064 run one used 

in Fig. 2b. As can be seen from the figure~ corresponding to a wide range of BRF values 

at the 1064 run (from 0.6 to 1.1), the BRF at the 532 nm varies much less (from 1.11 to 

1.15). Compared to the 1064 run standard deviation (0.07), the simulated 532 run result is 

much smaller (0.004). The figure also shows the effect of Rayleigh scattering. While the 

distribution of the 1064 run results do not change much with and without the 

consideration of Rayleigh scattering, the 532 run results change significantly. The mean 

changed from 1.14 at the surface to 0.90 at the top of atmosphere. 

We notice that there are certainly differences in 532 run BRF distributions from 

the AART model and the 555run distributions from the MODIS observations. These 

differences can corne from multiple sources. For example, (1) the resolution difference 

between the MODIS retrieval (1 krn) and the ICESat dataset used here (averaged over 7 

krn) may play an important role; (2) the modeling results are based on the assumption 

that surface BRF variability is caused by snow grain size only, which certainly has its 

limitations; (3) the MODIS retrievals over the polar regions has uncertainties as well (e.g. 

due to the very low solar zenith angle and the residual cloud cover). We are investigating 

the contribution of the above mentioned factors, but the point we want to make here is 

that both results show that the 532 run channel has a smaller standard deviation; hence it 

is better suited for cloud screening. 

VI. Summary 

ICESat-2 is a top priority NASA mission. Unlike its predecessor ICESat, which 

used a 1064 run lidar for surface altimetry and had a separate lidar system for 
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atmospheric measurements, ICESat-2 adopts a high repetition rate 532 nm photon 

counting system. It is more challenging for ICESat-2 to detect clouds, especially in sunlit 

conditions. This paper proposes a new method of using apparent surface reflectance for 

cloud screening in support of the ICESat-2 mission. Major results can be summarized as 

follows: 

(1) Clouds produce a strong signal in apparent surface reflectance. It is shown 

that depending on cloud height and microphysics, apparent surface reflectance may be 

decreased by 8% - 17% for COD = 0.1 and 57% - 85% for COD = 1.0. A new analytical 

approximation that accounts for contributions from the first and second order scattering 

has been derived (Eq. (5) and (6)) and compared with the Monte Carlo calculations. 

(2) The apparent surface reflectance method shows reasonable results when 

applied to the GLAS data. For example, over the West Antarctica region, a threshold of 

0.7 can be used to detect clouds. In this case, 15% of the clear pixels are misclassified as 

cloudy and 8% of the cloudy pixIes are misclassified as clear. The threshold can be 

adjusted to achieve more cloud or clear conservative results. 

(3) Cloud detectability is a function of surface variability. Generally, the 

smaller the surface variability, the more accurate is cloud detection. Both modeling 

studies and MODIS results show that the variability in apparent surface reflectance is 

much smaller for the 532 nm channel than that of the 1064 nm channel; hence better 

cloud screening results can be achieved with the future ICEsat-2 mission. 

ICESat-2 is scheduled for launch in 2016. Once enough ICESat-2 data are 

accumulated, a threshold data set can be easily developed and this method can be readily 

applied for cloud screening. 
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Fig. 1. The effect of cloud properties on ICESat-2 apparent surface reflectance. Results 
are normalized by the clear sky apparent surface reflectance. Black and gray curves are 
from Monte Carlo simulations and the color curves are analytical approximations from 
the radiative transfer and the diffraction theories. Red is for direct transmittance; green is 
the case when only single order scattering is accounted; blue is when both the first and 
second order scatterings are accounted. For the Monte Carlo simulations, Telescope of 
field of view (FOV) is 40 m in diameter. (a) Apparent surface reflectance changes as a 
function of COD for different cloud base heights (CBH) (in km). Cloud thickness is 
assumed to be 0.5 km; MODIS ice phase function for particle effective radius re=20 !lm 
is used. Note that the blue curve and the CBH = 0.5 curve are overlapping each other; so 
are the green curve and CBH = 1.0. (b) Same as (a) but for different cloud particle sizes 
and shapes. The numbers in the parentheses in the legend are the effective radii. Clouds 
are assumed to be located at 0.5 -1.0 km. Note that the three curves for re=20 !lm for 
different particle shapes are very close to each other. 
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Fig. 2. (a) Distribution of 1064 nm channel clear sky apparent surface reflectance. The 
inset is the Gaussian fit for the distribution over the East Antarctica. Data are from the 
GLAS L2A campaign. (b) Idealized apparent reflectance distribution (Gaussian) for clear 
sky (mean = 0.91; standard deviation = 0.07) (solid black line), and the corresponding 
distributions for COD = 0.1 (dashed black line) and COD = 0.5 (dashed grey line). Also 
shown is an example threshold (solid gray line). (c) Same as (b), but for a Gaussian 
distribution with mean = 0.91 and standard deviation = 0.03. 
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Fig. 3. Cloud misclassification rate as a function of threshold for different cloud optical 
depth "t. Also shown is the misclassification rate of clear pixels (black line). Clear sky 
apparent surface reflectance is assumed Gaussian with mean = 0.91. (a) For the 
distribution with a standard deviation of 0.07; (b) for the distribution with a standard 
deviation of 0.03. 
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Fig. 4. Apparent surface reflectance distributions for clear (green), cloudy (red) and total 
(black) sky conditions over the West Antarctica ice sheet. Data are from the GLAS L2A 
campaign. 
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Fig. 5. Interior East Antarctica (73S - 80S, 90E - 145E) surface BRF properties derived 
from MODIS observations for nadir illumination and nadir view angle. Only data with 
the best quality flag are used. (a) Surface BRF distributions for four MODIS channels. 
MODIS observations used are from Jan. 1 to 16, 2008; (b) average BRF and its standard 
deviation comparison between the 858.5 nm and the 555 nm channels. MODIS 
observations used are from the months of Dec., Jan. and Feb., 2008. Each dot in the 
figure represents one 16-day period. 
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Fig. 6. Snow BRF distributions at 1064 nm (grey lines) and 532 nm (black lines) 
wavelengths. Solid and dashed lines are for results at the top of atmosphere (TOA) and at 
the surface, respectively. The 532 nm results are based on the AART model. 
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