Development of RGB Composite Imagery for Operational Weather Forecasting Applications

1Andrew L. Molthan, 2Kevin K. Fuell, 3Hayden K. Oswald, and John A. Knaff

1NASA Short-term Prediction Research and Transition (SPoRT) Center, NASA MSFC, Huntsville, Alabama, 2University of Alabama Huntsville/SPoRT, Huntsville, Alabama, 3University of Missouri/NASA Summer Intern Program, Columbia, Missouri, 4NOAA/NESDIS Regional and Mesoscale Meteorology Branch, Fort Collins, Colorado

What is an RGB Composite Image?
- Current and future satellite instruments provide remote sensing at a variety of wavelengths.
- RGB composite imagery assign individual wavelengths or channel differences to the intensities of the red, green, and blue components of a pixel color.
- Each red, green, and blue color intensity is related to physical properties within the composite image.
- Final color assignments are therefore related to the characteristics of image pixels.
- Products may simplify the interpretation of data from multiple bands by displaying information in a single image.

Product Development
- Products shown here were generated based upon recipes developed by EUMETSAT.
- Each individual input channel or paired channel difference is assigned a series of thresholds for linear and gamma-factor image enhancement.
- Slight differences in temperature thresholds, brightness enhancements, and other characteristics are applied to account for differences in instruments.

MODIS Night Microphysics Composite
- The EUMETSAT “Night Microphysics” product was originally designed for the SEVIRI instrument but can also be applied to similar bands available from MODIS.
- This product allows for color separation of fog and low stratus from other cloud types and bare land or open water features. Input components for this product and color characteristics are shown in Figure 1.
- In the image below, the multispectral image improves upon single channel imagery by combining four channels of data into vibrant colors that discriminate low clouds from other features.
- Low clouds in characteristic blue shades correspond to reports of low visibility.

An Example of RGB Construction

Table 1. Recipe for construction of the “Night Microphysics” product designed by EUMETSAT, based upon their “Best Practices for Display of RGB Images” documentation.

<table>
<thead>
<tr>
<th>Color</th>
<th>Red</th>
<th>Green</th>
<th>Blue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red</td>
<td>J1</td>
<td>J2</td>
<td>J3</td>
</tr>
<tr>
<td>Green</td>
<td>J4</td>
<td>J5</td>
<td>J6</td>
</tr>
<tr>
<td>Blue</td>
<td>J7</td>
<td>J8</td>
<td>J9</td>
</tr>
</tbody>
</table>

Figure 2. Comparison of single channel infrared data and multispectral RGB night microphysics imagery for a fog event at 0815 UTC on 24 November 2010. Data were acquired from the MODIS instrument aboard the Aqua satellite and processed according to EUMETSAT guidelines.

MODIS Air Mass Composite
- The EUMETSAT Air Mass product can also be applied to MODIS.
- Color separation helps to identify the temperature and moisture characteristics of various air masses which are in turn related to various synoptic-scale features.
- In the image below, a single channel water vapor image is compared to the air mass composite. Vibrant colors in the air mass product correspond to synoptic-scale features and air mass characteristics as the storm progressed eastward.
- Fields from available RUC analysis were used to confirm synoptic-scale features evident in the water vapor image and their relationship to the air mass imagery.

Figure 3. Comparison of single channel water vapor imagery and multispectral RGB air mass imagery for a severe weather event occurring across the southeastern United States at 0315 UTC on 16 April 2011. Data were acquired from the MODIS instrument aboard the Aqua satellite and processed according to EUMETSAT guidelines.

GOES Sounder Air Mass Composite
- Although the current GOES East and West imagers lack all of the spectral bands required to produce an air mass image, the GOES Sounder can be used to produce similar imagery.
- CIRA has developed a technique to produce the air mass product from the GOES Sounder, with hourly updates of imagery across the United States.
- In the image below, the CIRA GOES Sounder RGB Air Mass product provides continuity to the MODIS imagery by relating color to synoptic-scale features.

Figure 4. Air Mass multispectral RGB imagery developed by CIRA based upon channels available on the GOES Sounder. In this case, a midlatitude cyclone was moving through the Upper Midwest on November 9, 2011, with various shades depicting cloud cover, moisture, and cold air moving in behind the cold front. Synoptic features and isolars provided by NOAA/NCEP Hydrometeorological Prediction Center.

SEVIRI Multispectral Composites
- EUMETSAT produces RGB composite imagery in real-time from the SEVIRI instrument aboard Meteosat-9. SPoRT produces equivalent imagery from SEVIRI data provided in real-time by NESDIS.
- SEVIRI products can be used to monitor the Atlantic basin, with multiple products helping to confirm features based upon multispectral characteristics.
- In the case below, various products confirmed an area of lofted dust and subsidence off of the coast of Africa.

Applications in the GOES-R Proving Ground
- Although RGB composite imagery are 24-bit, current AWIPS and NAWIPS systems do not support their display.
- SPoRT has developed a technique to display these images in AWIPS and NAWIPS by quantizing each to the number of colors displayable with each system.
- Images are provided to NOAA/NWS WFOs and NOAA/NCEP National Centers participating in the GOES-R Proving Ground.
- These products are evaluated by duty forecasters with responses provided to algorithm developers at SPoRT and CIRA in order to improve the products prior to their availability in the GOES-R era.

Summary and Future Work
- The launch of NPP provides additional observations from VIIRS, which provides information similar to MODIS and will provide additional composites...
- Interactions with forecasters, algorithm developers at CIRA, and discussions with EUMETSAT will continue to improve upon current products in advance of their potential availability from GOES-R.
- Additional forecaster feedback will be acquired to understand how best to apply these products to weather forecasting and analysis, with feedback implemented into future training materials.

Table 2. RGB composites expected from various current instruments.

<table>
<thead>
<tr>
<th>Air Mass</th>
<th>SEVIRI, MODIS, VIIRS Sounder</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fog</td>
<td>MODIS, VIIRS, SEVIRI</td>
</tr>
<tr>
<td>Haze</td>
<td>MODIS, VIIRS, SEVIRI</td>
</tr>
<tr>
<td>Snow</td>
<td>MODIS, VIIRS, SEVIRI</td>
</tr>
<tr>
<td>Cloud</td>
<td>MODIS, VIIRS, SEVIRI</td>
</tr>
<tr>
<td>Dry</td>
<td>MODIS, VIIRS, SEVIRI</td>
</tr>
<tr>
<td>Warm</td>
<td>MODIS, VIIRS, SEVIRI</td>
</tr>
<tr>
<td>Cold</td>
<td>MODIS, VIIRS, SEVIRI</td>
</tr>
<tr>
<td>Dust</td>
<td>MODIS, VIIRS, SEVIRI</td>
</tr>
<tr>
<td>Pollut</td>
<td>MODIS, VIIRS, SEVIRI</td>
</tr>
</tbody>
</table>

Acknowledgements
This collaborative work is sponsored in part by the GOES-R Proving Ground Activity. The authors thank collaborators Michael Folker (HPC) and Jack Beven (HPC) for providing examples of product usage at their respective NOAA Centers. Author Hayden Oswald was sponsored by the NASA Summer Intern Program at Marshall Space Flight Center.