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This invention introduces a methodol-
ogy and associated software tools for auto-
matically learning spacecraft system mod-
els without any assumptions regarding
system behavior. Data stream mining tech-
niques were used to learn models for criti-
cal portions of the International Space Sta-
tion (ISS) Electrical Power System (EPS).
Evaluation on historical ISS telemetry data
shows that adaptive system modeling re-
duces simulation error anywhere from 50
to 90 percent over existing approaches.

The purpose of the methodology is
to outline how someone can create ac-

curate system models from sensor
(telemetry) data. The purpose of the
software is to support the methodology.
The software provides analysis tools to
design the adaptive models. The soft-
ware also provides the algorithms to ini-
tially build system models and continu-
ously update them from the latest
streaming sensor data. The main
strengths are as follows:
• Creates accurate spacecraft system

models without in-depth system knowl-
edge or any assumptions about system
behavior.

• Automatically updates/calibrates sys-
tem models using the latest streaming
sensor data.

• Creates device specific models that
capture the exact behavior of devices
of the same type.

• Adapts to evolving systems.
• Can reduce computational complexity

(faster simulations).
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The purpose of Hazard Relative Nav-
igation (HRN) is to provide measure-
ments to the Navigation Filter so that it
can limit errors on the position esti-
mate after hazards have been detected.
The hazards are detected by processing
a hazard digital elevation map
(HDEM). The HRN process takes lidar
images as the spacecraft descends to
the surface and matches these to the
HDEM to compute relative position
measurements. Since the HDEM has
the hazards embedded in it, the posi-
tion measurements are relative to the
hazards, hence the name Hazard Rela-
tive Navigation. 

HRN processing starts with an initial
elevation map from the Hazard Detec-
tion and Avoidance (HDA) phase. This
map is generated by mosaicking the
lidar over the Hazard Map Area (HMA).
A feature selector is applied to the map
to find a reference surface point that is
surrounded by significant terrain relief
and is therefore easier to identify in sub-
sequent lidar images. This reference
point does not have to be the landing
site, and it probably won’t be because
the landing site should be free of ter-
rain relief. 

Next, the gimbal points the lidar sen-
sor at the reference point and a lidar
image is taken. The lidar image is con-
verted to 3D points and these points are
transformed into the local level coordi-
nate frame using the current knowledge
of the spacecraft position and attitude.
These points are re-gridded into an eleva-
tion map. This elevation map is spatially
correlated with the HDEM to determine
the position change of the reference
point in the local level frame between
where it was predicted to be given the
current state and its observed position
when the HDEM was constructed. 

The reference point is not actually
moving in the local level frame, so this
change in position is actually a measure-
ment of current navigation state error
growth from the time the HDEM was
created. Since attitude errors are ex-
pected to be very small, the change in
position of the reference point is most
likely due to errors in the position of the
spacecraft. This process is repeated with
multiple new lidar images as the space-
craft descends. 

During descent, the correlation per-
formance degrades due to the shrinking
field of view, increasing resolution and

changing in view angle. The ground
sample distance (GSD) of the basemap
should be no more than twice the GSD
of the current lidar map. To prevent the
correlation from failing, resulting in a
loss of knowledge of the position error
on the reference point, a new base map
is generated for correlation. This new
base map is created by mosaicking the
lidar around the landing site. A new,
higher-resolution elevation map is cre-
ated from the lidar mosaic. The feature
selector is applied to the new base map
to generate a new reference point. Lidar
images are then taken of this new refer-
ence point and correlated with the new
base map. 

The process of generating a new base
map, then correlating lidar images to it,
is repeated until the beginning of verti-
cal descent (30 m). Each time the base-
map changes, it is correlated with the
previous base map to tie its position to
the original HDEM. This correlation in-
troduces a fixed error to the estimate of
the change in position of the original
reference point. Fortunately, this fixed
error is a function of the resolution of
the corresponding base map, so the
fixed error contribution is decreasing. 
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