@l Software

¢3 Asynchronous Message
Service Reference
Implementation

This software provides a library of
middleware functions with a simple ap-
plication programming interface, en-
abling implementation of distributed
applications in conformance with the
CCSDS AMS (Consultative Committee
for Space Data Systems Asynchronous
Message Service) specification.

The AMS service, and its protocols,
implement an architectural concept
under which the modules of mission sys-
tems may be designed as if they were to
operate in isolation, each one produc-
ing and consuming mission information
without explicit awareness of which
other modules are currently operating.
Communication relationships among
such modules are self-configuring; this
tends to minimize complexity in the de-
velopment and operations of modular
data systems.

A system built on this model is a “soci-
ety” of generally autonomous, inter-op-
erating modules that may fluctuate
freely over time in response to changing
mission objectives, modules’ functional
upgrades, and recovery from individual
module failure. The purpose of AMS,
then, is to reduce mission cost and risk
by providing standard, reusable infra-
structure for the exchange of informa-
tion among data system modules in a
manner that is simple to use, highly au-
tomated, flexible, robust, scalable, and
efficient.

The implementation is designed to
spawn multiple threads of AMS func-
tionality under the control of an AMS
application program. These threads en-
able all members of an AMS-based, dis-
tributed application to discover one an-
other in real time, subscribe to messages
on specific topics, and to publish mes-
sages on specific topics. The query/reply
(client/server) communication model is
also supported.

Message exchange is optionally sub-
ject to encryption (to support confiden-
tiality) and authorization. Fault toler-
ance measures in the discovery protocol
minimize the likelihood of overall appli-
cation failure due to any single opera-
tional error anywhere in the system. The
multi-threaded design simplifies pro-
cessing while enabling application

NASA Tech Briefs, October 2011

nodes to operate at high speeds; linked
lists protected by mutex semaphores and
condition variables are used for effi-
cient, inter-thread communication. Ap-
plications may use a variety of transport
protocols underlying AMS itself, includ-
ing TCP (Transmission Control Proto-
col), UDP (User Datagram Protocol),
and message queues.

This work was done by Scott C. Burleigh of
Santa Barbara Applied Research for NASA’s
Jet Propulsion Laboratory. Further informa-
tion 1s contained in a TSP (see page 1). NPO-
42814

This software is available for commercial li-
censing. Please contact Daniel Broderick of
the California Institute of Technology at
danielb@caltech.edu. Refer to NPO-42814.

€3 Zero-Copy Objects System

Zero-Copy Objects System software
enables application data to be encapsu-
lated in layers of communication proto-
col without being copied. Indirect refer-
encing enables application source data,
either in memory or in a file, to be en-
capsulated “in place” within an unlim-
ited number of protocol headers and/or
trailers.

Zero-copy objects (ZCOs) are abstract
data access representations designed to
minimize I/O (input/output) in the en-
capsulation of application source data
within one or more layers of communi-
cation protocol structure. They are con-
structed within the heap space of a “Sim-
ple Data Recorder” (SDR) data store to
which all participating layers of the stack
must have access. Each ZCO contains
general information enabling access to
the core source data object (an item of
application data), together with (a) a
linked list of zero or more specific “ex-
tents” that reference portions of this
source data object, and (b) linked lists of
protocol header and trailer capsules.
The concatenation of the headers (in as-
cending stack sequence), the source
data object extents, and the trailers (in
descending stack sequence) constitute
the transmitted data object constructed
from the ZCO.

This scheme enables a source data ob-
ject to be encapsulated in a succession of
protocol layers without ever having to be
copied from a buffer at one layer of the
protocol stack to an encapsulating
buffer at a lower layer of the stack. For

large source data objects, the savings in
copy time and reduction in memory
consumption may be considerable.

This work was done by Scott C. Burleigh of
ACRO for NASA’s Jet Propulsion Laboratory.
Further information is contained in a TSP
(see page 1).

This software is available for commercial li-
censing. Please contact Daniel Broderick of
the California Institute of Technology at
danielb@caltech.edu. Refer to NPO-41627.

¢ Delay and Disruption
Tolerant Networking
MACHETE Model

To verify satisfaction of communica-
tion requirements imposed by unique
missions, as early as 2000, the Com-
munications Networking Group at the
Jet Propulsion Laboratory (JPL) saw the
need for an environment to support in-
terplanetary communication protocol
design, validation, and characterization.
JPL’s Multi-mission Advanced Com-
munications Hybrid Environment for
Test and Evaluation (MACHETE), de-
scribed in “Simulator of Space Com-
munication Networks” (NPO-41373)
NASA Tech Briefs, Vol. 29, No. 8 (August
2005), p. 44, combines various commer-
cial, non-commercial, and in-house cus-
tom tools for simulation and perform-
ance analysis of space networks. The
MACHETE environment supports or-
bital analysis, link budget analysis, com-
munications network simulations, and
hardware-in-the-loop testing. As NASA
is expanding its Space Communications
and Navigation (SCaN) capabilities to
support planned and future missions,
building infrastructure to maintain serv-
ices and developing enabling technolo-
gies, an important and broader role is
seen for MACHETE in design-phase
evaluation of future SCaN architectures.

To support evaluation of the develop-
ing Delay Tolerant Networking (DTN)
field and its applicability for space net-
works, JPL developed MACHETE mod-
els for DTN - Bundle Protocol (BP) and
Licklider/Long-haul Transmission Pro-
tocol (LTP). DTN is an Internet Re-
search Task Force (IRTF) architecture
providing communication in and/or
through highly stressed networking en-
vironments such as space exploration
and battlefield networks. Stressed net-
working environments include those



