
NASA Tech Briefs, October 2011 13

Software

Asynchronous Message 
Service Reference 
Implementation 

This software provides a library of
middleware functions with a simple ap-
plication programming interface, en-
abling implementation of distributed
applications in conformance with the
CCSDS AMS (Consultative Committee
for Space Data Systems Asynchronous
Message Service) specification. 

The AMS service, and its protocols,
implement an architectural concept
under which the modules of mission sys-
tems may be designed as if they were to
operate in isolation, each one produc-
ing and consuming mission information
without explicit awareness of which
other modules are currently operating.
Communication relationships among
such modules are self-configuring; this
tends to minimize complexity in the de-
velopment and operations of modular
data systems. 

A system built on this model is a “soci-
ety” of generally autonomous, inter-op-
erating modules that may fluctuate
freely over time in response to changing
mission objectives, modules’ functional
upgrades, and recovery from individual
module failure. The purpose of AMS,
then, is to reduce mission cost and risk
by providing standard, reusable infra-
structure for the exchange of informa-
tion among data system modules in a
manner that is simple to use, highly au-
tomated, flexible, robust, scalable, and
efficient. 

The implementation is designed to
spawn multiple threads of AMS func-
tionality under the control of an AMS
application program. These threads en-
able all members of an AMS-based, dis-
tributed application to discover one an-
other in real time, subscribe to messages
on specific topics, and to publish mes-
sages on specific topics. The query/reply
(client/server) communication model is
also supported. 

Message exchange is optionally sub-
ject to encryption (to support confiden-
tiality) and authorization. Fault toler-
ance measures in the discovery protocol
minimize the likelihood of overall appli-
cation failure due to any single opera-
tional error anywhere in the system. The
multi-threaded design simplifies pro-
cessing while enabling application

nodes to operate at high speeds; linked
lists protected by mutex semaphores and
condition variables are used for effi-
cient, inter-thread communication. Ap-
plications may use a variety of transport
protocols underlying AMS itself, includ-
ing TCP (Transmission Control Proto-
col), UDP (User Datagram Protocol),
and message queues. 

This work was done by Scott C. Burleigh of
Santa Barbara Applied Research for NASA’s
Jet Propulsion Laboratory. Further informa-
tion is contained in a TSP (see page 1). NPO-
42814 

This software is available for commercial li-
censing. Please contact Daniel Broderick of
the California Institute of Technology at
danielb@caltech.edu. Refer to NPO-42814.

Zero-Copy Objects System 
Zero-Copy Objects System software

enables application data to be encapsu-
lated in layers of communication proto-
col without being copied. Indirect refer-
encing enables application source data,
either in memory or in a file, to be en-
capsulated “in place” within an unlim-
ited number of protocol headers and/or
trailers. 

Zero-copy objects (ZCOs) are abstract
data access representations designed to
minimize I/O (input/output) in the en-
capsulation of application source data
within one or more layers of communi-
cation protocol structure. They are con-
structed within the heap space of a “Sim-
ple Data Recorder” (SDR) data store to
which all participating layers of the stack
must have access. Each ZCO contains
general information enabling access to
the core source data object (an item of
application data), together with (a) a
linked list of zero or more specific “ex-
tents” that reference portions of this
source data object, and (b) linked lists of
protocol header and trailer capsules.
The concatenation of the headers (in as-
cending stack sequence), the source
data object extents, and the trailers (in
descending stack sequence) constitute
the transmitted data object constructed
from the ZCO. 

This scheme enables a source data ob-
ject to be encapsulated in a succession of
protocol layers without ever having to be
copied from a buffer at one layer of the
protocol stack to an encapsulating
buffer at a lower layer of the stack. For

large source data objects, the savings in
copy time and reduction in memory
consumption may be considerable. 

This work was done by Scott C. Burleigh of
ACRO for NASA’s Jet Propulsion Laboratory.
Further information is contained in a TSP
(see page 1).

This software is available for commercial li-
censing. Please contact Daniel Broderick of
the California Institute of Technology at
danielb@caltech.edu. Refer to NPO-41627.

Delay and Disruption 
Tolerant Networking 
MACHETE Model

To verify satisfaction of communica-
tion requirements imposed by unique
missions, as early as 2000, the Com -
munications Networking Group at the
Jet Propulsion Laboratory (JPL) saw the
need for an environment to support in-
terplanetary communication protocol
design, validation, and characterization.
JPL’s Multi-mission Ad vanced Com -
munications Hybrid En vi ron ment for
Test and Evaluation (MACHETE), de-
scribed in ”Simulator of Space Com -
munication Networks” (NPO-41373)
NASA Tech Briefs, Vol. 29, No. 8 (August
2005), p. 44, combines various commer-
cial, non-commercial, and in-house cus-
tom tools for simulation and perform-
ance analysis of space networks. The
MACHETE environment supports or -
bital analysis, link budget analysis, com-
munications network simulations, and
hardware-in-the-loop testing. As NASA
is expanding its Space Communications
and Navigation (SCaN) capabilities to
support planned and future missions,
building infrastructure to maintain serv-
ices and developing enabling technolo-
gies, an important and broader role is
seen for MACHETE in design-phase
evaluation of future SCaN architectures.

To support evaluation of the develop-
ing Delay Tolerant Networking (DTN)
field and its applicability for space net-
works, JPL developed MACHETE mod-
els for DTN – Bundle Protocol (BP) and
Licklider/Long-haul Transmission Pro -
tocol (LTP). DTN is an Internet Re -
search Task Force (IRTF) architecture
providing communication in and/or
through highly stressed networking en-
vironments such as space exploration
and battlefield networks. Stressed net-
working environments include those



14 NASA Tech Briefs, October 2011

with intermittent (predictable and un-
known) connectivity, large and/or vari-
able delays, and high bit error rates. To
provide its services over existing domain
specific protocols, the DTN protocols
reside at the application layer of the
TCP/IP stack, forming a store-and-for-
ward overlay network. The key capabili-
ties of the Bundle Protocol include cus-
tody-based reliability, the ability to cope
with intermittent connectivity, the abil-
ity to take advantage of scheduled and
opportunistic connectivity, and late
binding of names to addresses. 

Internet standards are published in
Request For Comments (RFCs), and
the Bundle Protocol and LTP are de-
scribed in RFC 5050 and RFC 5326, re-
spectively. BP provides the store-carry-
forward, custody transfer and naming
capabilities of the DTN, while LTP was
specifically developed for long-delay
links. LTP allows for “red” and “green”
data portions in a single session, where
the red data portion uses retransmis-
sion and the green data portion does
not. Unlike common Internet retrans-
mission protocols, LTP adds the ability
to suspend and resume timers when the
link’s status changes. On occasion, the
models are extended to include non-
standard experimental features for vali-
dating project-specific performance or
behavioral requirements. For instance,
unlike standard simulation models, the
BP model supports external traffic in-
jection, which was used to verify correct
behavior of the SharedNet middleware
over DTN protocols and described at
the SMC-IT 2006 conference (Second
International Con ference On Space
Mission Chal lenges For Information
Tech nology). The MACHETE LTP
model supports all standard functions
of LTP along with an optional priority-
aware queuing system to prevent lower
priority from blocking higher-priority
traffic arriving later. 

Furthermore, MACHETE contains
Consultative Committee for Space Data
Systems (CCSDS) protocol standards,
such as Proximity-1, Advanced Orbiting
Systems (AOS), Packet Telemetry/
Telecommand, Space Communications
Protocol Specification (SCPS), and the
CCSDS File Delivery Protocol (CFDP).
So, with the addition of DTN protocol li-
braries interplanetary network, engi-
neers at JPL can characterize future
space network performance trade-offs.

This work was done by John S. Seguí, Esther
H. Jennings, and Jay L. Gao of Caltech for
NASA’s Jet Propulsion Laboratory. For more
information, contact iaoffice@jpl.nasa.gov.

This software is available for commercial li-
censing. Please contact Daniel Broderick of
the California Institute of Technology at
danielb@caltech.edu. Refer to NPO-43410.

Contact Graph Routing 
Contact Graph Routing (CGR) is a dy-

namic routing system that computes
routes through a time-varying topology
of scheduled communication contacts
in a network based on the DTN (Delay-
Tolerant Networking) architecture. It is
designed to enable dynamic selection of
data transmission routes in a space net-
work based on DTN. This dynamic re-
sponsiveness in route computation
should be significantly more effective
and less expensive than static routing,
increasing total data return while at the
same time reducing mission operations
cost and risk. 

The basic strategy of CGR is to take
advantage of the fact that, since flight
mission communication operations are
planned in detail, the communication
routes between any pair of “bundle
agents” in a population of nodes that
have all been informed of one another’s
plans can be inferred from those plans
rather than discovered via dialogue
(which is impractical over long one-way-
light-time space links). Messages that
convey this planning information are
used to construct “contact graphs”
(time-varying models of network con-
nectivity) from which CGR automatically
computes efficient routes for bundles.
Automatic route selection increases the
flexibility and resilience of the space net-
work, simplifying cross-support and re-
ducing mission management costs.

Note that there are no “routing tables”
in Contact Graph Routing. The best
route for a bundle destined for a given
node may routinely be different from the
best route for a different bundle destined
for the same node, depending on bundle
priority, bundle expiration time, and
changes in the current lengths of trans-
mission queues for neighboring nodes;
routes must be computed individually for
each bundle, from the Bundle Protocol
agent’s current network connectivity
model for the bundle’s destination node
(the contact graph). Clearly this places a
premium on optimizing the implementa-
tion of the route computation algorithm.
The scalability of CGR to very large net-
works remains a research topic.

The information carried by CGR con-
tact plan messages is useful not only for
dynamic route computation, but also for
the implementation of rate control, con-

gestion forecasting, transmission epi -
sode initiation and termination, timeout
interval computation, and retransmis-
sion timer suspension and resumption. 

This work was done by Scott C. Burleigh of
Caltech for NASA’s Jet Propulsion Laboratory.
Further information is contained in a TSP
(see page 1).

This software is available for commercial li-
censing. Please contact Daniel Broderick of
the California Institute of Technology at
danielb@caltech.edu. Refer to NPO-45488. 

Parallel Eclipse Project
Checkout 

Parallel Eclipse Project Checkout
(PEPC) is a program written to leverage
parallelism and to automate the check-
out process of plug-ins created in Eclipse
RCP (Rich Client Platform). Eclipse
plug-ins can be aggregated in a “feature
project.” This innovation digests a fea-
ture description (xml file) and automat-
ically checks out all of the plug-ins listed
in the feature. This resolves the issue of
manually checking out each plug-in re-
quired to work on the project. To mini-
mize the amount of time necessary to
checkout the plug-ins, this program
makes the plug-in checkouts parallel.
After parsing the feature, a request to
checkout for each plug-in in the feature
has been inserted. These requests are
handled by a thread pool with a config-
urable number of threads. By checking
out the plug-ins in parallel, the checkout
process is streamlined before getting
started on the project.

For instance, projects that took 30
minutes to checkout now take less than
5 minutes. The effect is especially clear
on a Mac, which has a network monitor
displaying the bandwidth use. When
running the client from a developer’s
home, the checkout process now satu-
rates the bandwidth in order to get all
the plug-ins checked out as fast as possi-
ble. For comparison, a checkout process
that ranged from 8-200 Kbps from a de-
veloper’s home is now able to saturate a
pipe of 1.3 Mbps, resulting in signifi-
cantly faster checkouts. 

Eclipse IDE (integrated develop-
ment environment) tries to build a
project as soon as it is downloaded. As
part of another optimization, this in-
novation programmatically tells
Eclipse to stop building while check-
outs are happening, which dramati-
cally reduces lock contention and en-
ables plug-ins to continue
downloading until all of them finish.
Furthermore, the software re-enables


