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The sonic thermometer is a special-
ized application of well-known sonic
anemometer technology. Adaptations
have been made to the circuit, includ-
ing the addition of supporting sensors,
which enable its use in the high-alti-
tude environment and in non-air gas
mixtures.

There is a need to measure gas tem-
peratures inside and outside of super-
pressure balloons that are flown at
high altitudes. These measurements
will allow the performance of the bal-
loon to be modeled more accurately,
leading to better flight performance.
Small thermistors (solid-state tempera-
ture sensors) have been used for this
general purpose, and for temperature
measurements on radiosondes. A dis-
advantage to thermistors and other
physical (as distinct from sonic) tem-
perature sensors is that they are subject
to solar heating errors when they are
exposed to the Sun, and this leads to is-
sues with their use in a very high-
altitude environment.

While sonic anemometers and ther-
mometers are commonly encountered

in surface-based applications, they are
not found in a high-altitude [e.g.,
100,000 ft (≈30.5 km) and above] envi-
ronment. One reason for this is the very
thin air and correspondingly poor
sound propagation encountered at
these altitudes. A second issue is that the
gas temperature inside the balloon is re-
quired. Aside from mounting considera-
tions, this also leads to a need to operate
correctly in a helium or helium/air gas
mixture. The gas composition must be
known via some means in order to com-
pute accurate temperatures. 

To make accurate sonic temperature
measurements, the mean molecular
weight of the gas the sensor is working in
must be known, as must the value for
gamma (the ratio of gas heat capacity at
constant pressure divided by gas heat ca-
pacity at constant volume) for that gas.
Therefore, a supporting measurement is
required that directly or indirectly allows
gas composition and gamma to be deter-
mined. With this data, the speed of
sound as measured by the sonic ther-
mometer can then be used to compute
an accurate temperature.

The key addition to the basic sonic
thermometer design was a sensor that,
in this case, measured gas heat capacity
at constant pressure. This data could
then be used to identify the gas mix-
ture composition (ranging from pure
helium to pure air), and with that data
both mean gas molecular weight and
gamma could be computed. In turn,
this data is required for the tempera-
ture calculation.

The supporting sensor used for gas
composition/molecular weight/gamma
measurement is built as an integral part of
the sonic thermometer circuitry, and con-
sists of a pair of simple semiconductor
sensors. During measurements, a gas
composition measurement is made at the
same time as a speed of sound measure-
ment is made by the sonic thermometer.
Thus, each measurement has its own gas
composition data associated with it, en-
abling a precise temperature computa-
tion to be completed.

This work was done by John Bognar of
Anasphere for Goddard Space Flight Center.
Further information is contained in a TSP
(see page 1). GSC-16104-1
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The dark current of a transferred-
electron photocathode with an InGaAs
absorber, responsive over the 0.9-to-1.7-
µm range, must be reduced to an ul-
tralow level suitable for low signal spec-
tral astrophysical measurements by
lowering the temperature of the sensor
incorporating the cathode. However,
photocathode quantum efficiency (QE)
is known to reduce to zero at such low
temperatures. Moreover, it has not been
demonstrated that the target dark cur-
rent can be reached at any temperature
using existing photocathodes. 

Changes in the transferred-electron
photocathode epistructure (with an In-
GaAs absorber lattice-matched to InP

and exhibiting responsivity over the 0.9-
to-1.7-µm range) and fabrication
processes were developed and imple-
mented that resulted in a demonstrated
>13× reduction in dark current at –40 ºC
while retaining >95% of the ≈25% satu-
rated room-temperature QE. Further
testing at lower temperature is needed to
confirm a >25 ºC predicted reduction in
cooling required to achieve an ultralow
dark-current target suitable for faint
spectral astronomical observations that
are not otherwise possible. This reduc-
tion in dark current makes it possible to
increase the integration time of the im-
aging sensor, thus enabling a much
higher near-infrared (NIR) sensitivity

than is possible with current technology.
As a result, extremely faint phenomena
and NIR signals emitted from distant ce-
lestial objects can be now observed and
imaged (such as the dynamics of red-
shifting galaxies, and spectral measure-
ments on extra-solar planets in search of
water and bio-markers) that were not
previously possible. In addition, the en-
hanced NIR sensitivity also directly bene-
fits other NIR imaging applications, in-
cluding drug and bomb detection,
stand-off detection of improvised explo-
sive devices (IED’s), Raman spectroscopy
and microscopy for life/physical science
applications, and semiconductor prod-
uct defect detection.
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be observed and imaged.
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A set of methods was developed for
implementing an InGaAs photocathode
whereby the dark current can be re-
duced by lowering the temperature to
the ultralow target level, while at the
same time, exhibiting QE that is high
enough to perform the astrophysical
measurements. 

This innovation features a thin, n-type
InP cap layer that is etched during final
cleaning between the grid lines. Along
with an n-type InP layer at the heteroint-
erface and a p-type InP emitting surface
layer, the extra degree-of-freedom pro-
vided by the n-type InP cap layer enables
independent tailoring of the electric
field at 3 key locations in the device: be-
neath the grid lines, at the emitting InP

surface between grid lines, and at the p-
type InGaAs absorber/n-type InP het-
erointerface. This enables minimization
of the field beneath the grid lines while
the emitting surface and heterointerface
fields are balanced such that the onset of
high escape probability and turn-on
completion of the heterointerface occur
at the same reduced device bias. The re-
sulting effect is that dark current compo-
nents are minimized, including those
due to undue extension of the depletion
region into the low bandgap absorber
and premature emitting surface field de-
velopment with bias, while maintaining
high QE and minimal grid line leakage.

The innovation features an InP:Zn
emitting surface layer doped below the

onset of Zn diffusion (thus minimizing
epitaxy and process variability), absence
of an undoped InP drift layer (along
with the avalanche-current-inducing
voltage drop across it), and an InGaAsP
step grade layer introduced at the In-
GaAs absorber/InP:Si layer heterointer-
face (further reducing dark current
components associated with the de-
pleted low bandgap absorber). Employ-
ment of a SiON dielectric beneath the
grid line promotes device stability and
the absence of fixed mobile charge in
the metal/dielectric/InP stack. 

This work was done by Michael Jurkovic of
Intevac Photonics for Goddard Space Flight
Center. Further information is contained in a
TSP (see page 1).GSC-16044-1

This innovation will replace a beam
combiner, a phase shifter, and a mode
conditioner, thus simplifying the system
design and alignment, and saving
weight and space in future missions.
This nuller is a dielectric-waveguide-
based, four-port asymmetric coupler. Its
nulling performance is based on the
mode-sorting property of adiabatic
asymmetric couplers that are intrinsi-
cally achromatic. This nuller has been
designed, and its performance mod-
eled, in the 6.5-micrometer to 9.25-mi-
crometer spectral interval (36% band-
width). The calculated suppression of
starlight for this 15-cm-long device is
10–5 or better through the whole band-
width. This is enough to satisfy require-

ments of a flagship exoplanet-character-
ization mission. 

Nulling interferometry is an ap-
proach to starlight suppression that
will allow the detection and spectral
characterization of Earth-like exoplan-
ets. Nulling interferometers separate
the light originating from a dim
planet from the bright starlight by
placing the star at the bottom of a
deep, destructive interference fringe,
where the starlight is effectively can-
celled, or nulled, thus allowing the
faint off-axis light to be much more
easily seen. This process is referred to
as nulling of the starlight. 

Achromatic nulling technology is a
critical component that provides the

starlight suppression in interferometer-
based observatories. Previously consid-
ered space-based interferometers are
aimed at approximately 6-to-20-mi-
crometer spectral range. While con-
taining the spectral features of many
gases that are considered to be signa-
tures of life, it also offers better planet-
to-star brightness ratio than shorter
wavelengths. 

In the Integrated Optics Achromatic
Nuller (IOAN) device, the two beams
from the interferometer’s collecting tel-
escopes pass through the same focusing
optic and are incident on the input of
the nuller. 

The dual-input waveguide structure
accommodates two modes, while each of

Integrated Optics Achromatic Nuller for Stellar Interferometry 
Nuller allows faint off-axis light to be much more easily seen. 
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A 3-dimensional view of the Integrated Optics Achromatic Nuller device. (a) The scales are distorted for visual clarity. The input from the two telescopes is inci-
dent on the device from the left. (b) The input field for the case of the two telescope beams arriving in-phase (starlight) and exactly out-of-phase (planet light). 
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