
While these combined components
will mix and produce a near stoichio-
metric flame with a temperature high
enough to ignite the reactants in most
combustion devices, the overall mass
flow rate and energy is still relatively
low. For the extreme conditions of ignit-
ing a cryogenic propellant chemical
rocket, this total may not be enough to
maintain a flame in the adverse environ-
ment. To enable this operation, another
gas phase stage called the secondary
augmenter is added in series with the
first two components. As more heat re-
lease is required, the mass flow rate is in-
creased by an order of magnitude to
more than 0.1 g/s for this stage. The
flows are kept separate, however, until
injected where they impinge and mix
within this secondary augmenter. Again,

the flows are distributed via a manifold
system then injected through ports that
are sized more than an order of magni-
tude larger than the total port area of
the first two components. The mixture
is kept fuel rich so that the temperature
is regulated below the melting point of
the components. With the ignition of
this stage, a large stable torch is pro-
duced to ignite the cryogens. 
The hardware is designed so that the

total size of the device was similar to
that of a traditional spark plug. Like-
wise, the outlet of the igniter mimics
that of a spark plug in order to have it
act as a direct replacement in combus-
tion devices. In tests it functioned as
such, lighting chambers with propel-
lant flows an order of magnitude larger.
Operation was demonstrated with back

pressures as low as 0.01 atmospheres up
to approximately 10 atmospheres and
in theory, these bounds could be wider.
Ignition was demonstrated with reac-
tant temperatures near chilled-in cryo-
genic conditions. This igniter serves as
a low-energy alternative to spark igni-
tion and can operate as an ignition
source for a variety of commercial com-
bustion devices. 
This work was done by Steven J. Schneider

and Matthew C. Deans of Glenn Research
Center. Further information is contained in a
TSP (see page 1).
Inquiries concerning rights for the commer-

cial use of this invention should be addressed
to NASA Glenn Research Center, Innovative
Partnerships Office, Attn: Steven Fedor, Mail
Stop 4–8, 21000 Brookpark Road, Cleve-
land, Ohio 44135. Refer to LEW-18565-1.

Panoramic images with a wide field of
view intend to provide a better under-
standing of an environment by placing
objects of the environment on one seam-
less image. However, understanding the
sizes and relative positions of the objects
in a panorama is not intuitive and prone
to errors because the field of view is un-
natural to human perception. Scientists
are often faced with the difficult task of
interpreting the sizes and relative posi-
tions of objects in an environment when
viewing an image of the environment on
computer monitors or prints. A
panorama can display an object that ap-
pears to be to the right of the viewer
when it is, in fact, behind the viewer.
This misinterpretation can be very
costly, especially when the environment
is remote and/or only accessible by un-
manned vehicles. 
A 270° cylindrical display has been de-

veloped that surrounds the viewer with
carefully calibrated panoramic imagery
that correctly engages their natural kines-
thetic senses and provides a more accu-
rate awareness of the environment. The
cylindrical immersive display offers a
more natural window to the environment
than a standard cubic CAVE (Cave Auto-
matic Virtual Environment), and the
geometry allows multiple collocated users
to simultaneously view data and share im-
portant decision-making tasks.

A CAVE is an immersive virtual reality
environment that allows one or more
users to absorb themselves in a virtual
environment. A common CAVE setup is
a room-sized cube where the cube sides
act as projection planes. By nature, all
cubic CAVEs face a problem with edge
matching at edges and corners of the
display. Modern immersive displays have
found ways to minimize seams by creat-
ing very tight edges, and rely on the user
to ignore the seam. One significant defi-
ciency of flat-walled CAVEs is that the
sense of orientation and perspective
within the scene is broken across adja-
cent walls. On any single wall, parallel
lines properly converge at their vanish-
ing point as they should, and the sense
of perspective within the scene con-
tained on only one wall has integrity. Un-
fortunately, parallel lines that lie on ad-
jacent walls do not necessarily remain
parallel. This results in inaccuracies in
the scene that can distract the viewer
and subtract from the immersive experi-
ence of the CAVE. 
The cylindrical display overcomes the

problem of distorted edges. Its smooth
surface is perfectly equidistant from the
viewer when he or she is positioned near
the center. This eliminates the artifacts
of a flat-walled CAVE where the viewing
surface varies in distance from the
viewer wherever he or she may stand

within it. The display is a curved rear-
projected screen comprising three-quar-
ters of a 12-ft-diameter (≈3.7-m-diame-
ter) cylinder. The projection surface is a
high-contrast, unity gain, flexible screen
material. The screen is about 6.5 ft (≈2
m) tall, and the height of the actual
image displayed on the screen is approx-
imately 5 ft (≈1.5 m). A single consumer
video card outputs to three short-throw
projectors that are mounted behind the
screen. Each projector illuminates 90° of
the screen and overlaps slightly with an
adjacent projector. The resolution of the
entire cylindrical display is about
3,500×1,024 pixels. The projectors are
edge-blended and calibrated into a
seamless display using Scalable Display
Technologies’ camera-based calibration. 
This system, known as Stage, is designed

to address two critical visualization prob-
lems. First, people viewing imagery from
surface spacecraft often incorrectly esti-
mate the size of objects in the environ-
ment because imagery on a standard com-
puter screen does not occupy the correct
portion of their visual field. Second, peo-
ple viewing panoramic images frequently
fail to understand the relative positions of
objects in the environment because the
panoramic image is rolled out flat and pre-
sented in front of them instead of wrap-
ping around them. These fundamental er-
rors have well-documented and dramatic

Stage Cylindrical Immersive Display 
This collaborative design environment enables design engineers to be immersed in a car or
airplane, for example, to evaluate the designs of components. 
NASA’s Jet Propulsion Laboratory, Pasadena, California 
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This innovation enables a means for ac-
tively measuring atomic oxygen fluence
(accumulated atoms of atomic oxygen per
area) that has impinged upon spacecraft
surfaces. Telemetered data from the device
provides spacecraft designers, researchers,
and mission managers with real-time meas-
urement of atomic oxygen fluence, which
is useful for prediction of the durability of
spacecraft materials and components.

The innovation is a compact fluence
measuring device that allows in-space
measurement and transmittance of
measured atomic oxygen fluence as a
function of time based on atomic oxy-
gen erosion yields (the erosion yield of a
material is the volume of material that is
oxidized per incident oxygen atom) of
materials that have been measured in
low Earth orbit. It has a linear electrical

response to atomic oxygen fluence, and
is capable of measuring high atomic oxy-
gen fluences (up to >1022 atoms/cm2),
which are representative of multi-year
low-Earth orbital missions (such as the
International Space Station).
The durability or remaining structural

lifetime of solar arrays that consist of poly-
mer blankets on which the solar cells are
attached can be predicted if one knows

Atomic Oxygen Fluence Monitor
Applications include the semiconductor industry where atomic oxygen is used to clean and/or
remove photoresist from semiconductor surfaces.
John H.  Glenn Research Center, Cleveland, Ohio

Acquiring cheap, moving video was im-
possible in a vacuum environment, due to
camera overheating. This overheating is
brought on by the lack of cooling media in
vacuum. A water-jacketed camera cooler
enclosure machined and assembled from
copper plate and tube has been developed. 
The camera cooler (see figure) is cup-

shaped and cooled by circulating water
or nitrogen gas through copper tubing.

The camera, a store-bought “spy type,” is
not designed to work in a vacuum. With
some modifications the unit can be ther-
mally connected when mounted in the
cup portion of the camera cooler. The
thermal conductivity is provided by cop-
per tape between parts of the camera
and the cooled enclosure. 
During initial testing of the demon-

stration unit, the camera cooler kept the

CPU (central processing unit) of this
video camera at operating temperature.
This development allowed video record-
ing of an in-progress test, within a vac-
uum environment. 
This work was performed by Geoffrey A.

Laugen of Caltech for NASA’s Jet Propulsion
Laboratory. For more information, contact
iaoffice@jpl.nasa.gov. NPO-47417

Vacuum Camera Cooler 
Cooler maintains proper operating temperature.
NASA’s Jet Propulsion Laboratory, Pasadena, California

 

(a)

consequences. Viewers frequently believe
an object is beside a robot when it is actu-
ally behind it, or think that a small rock is
actually a large, hazardous obstacle that
must be avoided. Stage addresses both of

these problems by immersing viewers in
an accurate representation of the operat-
ing environment. 
This work was done by Lucy Abramyan, Jef-

frey S. Norris, Mark W. Powell, David S.

Mittman, and Khawaja S. Shams of Caltech
for NASA’s Jet Propulsion Laboratory. For more
information, contact iaoffice@jpl.nasa.gov.
NPO-47469 

 

(b)

Photos of Vacuum Camera Cooler: (a) Camera cooler with camera installed and (b) camera cooler with camera partially removed to expose copper tape
and thermocouple, which are attached to overheating camera CPU.
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