
28 NASA Tech Briefs, August 2011

The Modified Gerchberg-Saxton
(MGS) algorithm is an image-based
wavefront-sensing method that can turn
any science instrument focal plane into
a wavefront sensor. MGS characterizes
optical systems by estimating the wave-
front errors in the exit pupil using only
intensity images of a star or other point
source of light. This innovative imple-
mentation of MGS significantly acceler-
ates the MGS phase retrieval algorithm
by using stream-processing hardware on
conventional graphics cards. 

Stream processing is a relatively new,
yet powerful, paradigm to allow paral-
lel processing of certain applications
that apply single instructions to multi-
ple data (SIMD). These stream proces-
sors are designed specifically to sup-
port large-scale parallel computing on
a single graphics chip. Computation-

ally intensive algorithms, such as the
Fast Fourier Transform (FFT), are par-
ticularly well suited for this computing
environment. This high-speed version
of MGS exploits commercially available
hardware to accomplish the same ob-
jective in a fraction of the original
time. The exploit involves performing
matrix calculations in nVidia graphic
cards. The graphical processor unit
(GPU) is hardware that is specialized
for computationally intensive, highly
parallel computation. 

From the software perspective, a paral-
lel programming model is used, called
CUDA, to transparently scale multicore
parallelism in hardware. This technology
gives computationally intensive applica-
tions access to the processing power of
the nVidia GPUs through a C/C++ pro-
gramming interface. The AAMGS (Accel-

erated Adaptive MGS) software takes ad-
vantage of these advanced technologies,
to accelerate the optical phase error char-
acterization. With a single PC that con-
tains four nVidia GTX-280 graphic cards,
the new implementation can process four
images simultaneously to produce a
JWST (James Webb Space Telescope)
wavefront measurement 60 times faster
than the previous code.

This work was done by Raymond K. Lam,
Catherine M. Ohara, Joseph J. Green, Sid-
darayappa A. Bikkannavar, Scott A. Basinger,
David C. Redding, and Fang Shi of Caltech for
NASA’s Jet Propulsion Laboratory. For more in-
formation, contact iaoffice@jpl.nasa.gov. 

The software used in this innovation is
available for commercial licensing. Please con-
tact Daniel Broderick of the California Insti-
tute of Technology at danielb@caltech.edu.
Refer to NPO-47101.
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A new modeling approach is based
on the concept of large eddy simula-
tion (LES) within which the large
scales are computed and the small
scales are modeled. The new approach
is expected to retain the fidelity of the

physics while also being computation-
ally efficient. Typically, only models for
the small-scale fluxes of momentum,
species, and enthalpy are used to rein-
troduce in the simulation the physics
lost because the computation only re-

solves the large scales. These models
are called subgrid (SGS) models be-
cause they operate at a scale smaller
than the LES grid.

In a previous study of thermodynami-
cally supercritical fluid disintegration and

Large Eddy Simulation Study for Fluid Disintegration and Mixing 
This work is directly applicable to simulations of gas turbine engines and rocket engines.
NASA’s Jet Propulsion Laboratory, Pasadena, California

grades for non-uniformly distributed
structures due to the inherent need to
employ a uniform global grid. FMM or
QR techniques are better suited than
FFT techniques; however, neither the
FMM nor the QR technique can be
used at all frequencies. 

This method has been developed to
efficiently solve for a desired parameter
of a system or device that can include
both electrically large FMM elements,
and electrically small QR elements. The
system or device is set up as an oct-tree
structure that can include regions of
both the FMM type and the QR type.
The system is enclosed with a cube at a 0-
th level, splitting the cube at the 0-th
level into eight child cubes. This forms
cubes at a 1-st level, recursively repeating
the splitting process for cubes at succes-
sive levels until a desired number of lev-

els is created. For each cube that is thus
formed, neighbor lists and interaction
lists are maintained. 

An iterative solver is then used to de-
termine a first matrix vector product for
any electrically large elements as well as
a second matrix vector product for any
electrically small elements that are in-
cluded in the structure. These matrix
vector products for the electrically large
and small elements are combined, and a
net delta for a combination of the ma-
trix vector products is determined. The
iteration continues until a net delta is
obtained that is within the predefined
limits. The matrix vector products that
were last obtained are used to solve for
the desired parameter. The solution for
the desired parameter is then presented
to a user in a tangible form; for example,
on a display. 

This work was done by Vikram Jandhyala
and Indranil Chowdhury of the University of
Washington for Johnson Space Center. For
further information, contact the Johnson
Technology Transfer Office at (281) 483-
3809.  

In accordance with Public Law 96-517,
the contractor has elected to retain title to this
invention. Inquiries concerning rights for its
commercial use should be addressed to:

Janice C. Walsh
Federal Reporting Compliance Licensing Spe-

cialist
UW Tech Transfer
University of Washington 
4322-11th Avenue, N.E., Suite 500
Seattle, WA 98105-4608
E-mail: uwinvent@u.washington.edu
Refer to MSC-24439-1, volume and number

of this NASA Tech Briefs issue, and the page
number.


