units (GPUs) for accelerating data
analysis tasks.

The tool suite developed in this proj-
ect enables scientists now to solve de-
manding data analysis problems in IDL
that previously required specialized soft-
ware, and it allows them to be solved or-
ders of magnitude faster than on con-
ventional PCs. The tool suite consists of
three components: (1) TaskDL, a soft-
ware tool that simplifies the creation
and management of task farms, collec-
tions of tasks that can be processed inde-
pendently and require only small
amounts of data communication; (2)

mpiDL, a tool that allows IDL develop-
ers to use the Message Passing Interface
(MPI) inside IDL for problems that re-
quire large amounts of data to be ex-
changed among multiple processors;
and (3) GPULIb, a tool that simplifies
the use of GPUs as mathematical co-
processors from within IDL.

mpiDL is unique in its support for the
full MPI standard and its support of a
broad range of MPI implementations.
GPULIDb is unique in enabling users to
take advantage of an inexpensive piece
of hardware, possibly already installed in
their computer, and achieve orders of

magnitude faster execution time for nu-
merically complex algorithms. TaskDL
enables the simple setup and manage-
ment of task farms on compute clusters.

The products developed in this proj-
ect have the potential to interact, so one
can build a cluster of PCs, each
equipped with a GPU, and use mpiDL to
communicate between the nodes and
GPULID to accelerate the computations
on each node.

This work was done by Peter Messmer of
Tech-X Corporation for Goddard Space Flight
Center. Further information is contained in a
TSP (see page 1). GSC-15749-1

Data Processing

¢3 Experiment in Onboard Synthetic Aperture Radar

The algorithm runs in a parallel/multicore environment, and integrates radiation hardening by
software (RHBS) self-protection strategies.

Goddard Space Flight Center, Greenbelt, Maryland

Single event upsets (SEUs) are a
threat to any computing system running
on hardware that has not been physically
radiation hardened. In addition to man-
dating the use of performance-limited,
hardened heritage equipment, prior
techniques for dealing with the SEU
problem often involved hardware-based
error detection and correction (EDAC).
With limited computing resources, soft-
ware-based EDAC, or any more elabo-
rate recovery methods, were often not
feasible. Synthetic aperture radars
(SARs), when operated in the space en-
vironment, are interesting due to their
relevance to NASAs objectives, but prob-
lematic in the sense of producing prodi-
gious amounts of “raw” data. Prior im-
plementations of the SAR data
processing algorithm have been too
slow, too computationally intensive, and
require too much application memory
for onboard execution to be a realistic
option when using the type of heritage
processing technology described above.

This standard C-language implemen-
tation of SAR data processing is distrib-
uted over many cores of a Tilera Multi-
core Processor, and employs novel
Radiation Hardening by Software
(RHBS) techniques designed to protect
the component processes (one per

NASA Tech Briefs, November 2011

core) and their shared application mem-
ory from the sort of SEUs expected in
the space environment. The source code
includes calls to Tilera APIs, and a spe-
cialized Tilera compiler is required to
produce a Tilera executable. The com-
piled application reads input data de-
scribing the position and orientation of
aradar platform, as well as its radar-burst
data, over time and writes out processed
data in a form that is useful for analysis
of the radar observations.

The application is capable of recover-
ing from some types of SEU-induced in-
terference with component processes
and/or corruption of the shared appli-
cation memory, and also writes out per-
formance statistics designed to assist in
evaluating the effectiveness of the novel
RHBS techniques employed. These per-
formance data are useful in identifying,
time-stamping, and (indirectly) geo-lo-
cating SEU incidents along with the ap-
plication’s responses.

The tileSAR software distributes the
problem of processing SAR data over an
“engine” made up of a number of coop-
erating parallel processes (one per
core). This engine is replicated three
times within the Tilera processor; always
one process per core, and all engines
running in parallel. Each engine also in-

cludes an additional scrubbing process
(core), and there is one final triple-vot-
ing process external to the engines.
When distributing the SAR algorithm
among the processes of each engine, the
usual single-stringed implementation
(each sub-task executed in sequence) is
replaced with an implementation where
independent operations are carried out
concurrently by independent processes.
Every opportunity for concurrency
within this algorithm is exploited, as this
dramatically reduces execution time.
The result of each engine’s processing is
a series of output records. The processes
that make up each engine share a single
working set of data, collectively called
the engine’s “workspace.” The state of
each workspace at each synchronization
point is expected to be identical to that
of the other engines, and reflects the
state of progress the engine has made
through its execution of the algorithm.
The combined effect of scrubbing and
triple-voting enables certain types of
workspace corruption to be detected
and corrected such that processing may
continue without interruption or error.

This work was done by Matthew Holland of
Goddard Space Flight Center. Further informa-
tion is contained in a TSP (see page 1). GSC-
15757-1



