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A technique has been developed for
patterning thin metallic films that are,
in turn, used to fabricate microelec-
tronics circuitry and thin-film sensors.
The technique uses germanium thin
films as lift-off masks. This requires de-
velopment of a technique to strip or
undercut the germanium chemically
without affecting the deposited metal.
Unlike in the case of conventional
polymeric lift-off masks, the substrate
can be exposed to very high tempera-
tures during processing (sputter depo-
sition). The reason why polymeric lift-
off masks cannot be exposed to very
high temperatures (>100 °C) is be-

cause (a) they can become cross
linked, making lift-off very difficult if
not impossible, and (b) they can out-
gas nitrogen and oxygen, which then
can react with the metal being de-
posited. Consequently, this innovation
is expected to find use in the fabrica-
tion of transition edge sensors and mi-
crowave kinetic inductance detectors,
which use thin superconducting films
deposited at high temperature as their
sensing elements.

Transition edge sensors, microwave ki-
netic inductance detectors, and their cir-
cuitry are comprised of superconduct-
ing thin films, for example Nb and TiN.

Reactive ion etching can be used to pat-
tern these films; however, reactive ion
etching also damages the underlying
substrate, which is unwanted in many in-
stances. Polymeric lift-off techniques
permit thin-film patterning without any
substrate damage, but they are difficult
to remove and the polymer can outgas
during thin-film deposition. The out-
gassed material can then react with the
film with the consequence of altered
and non-reproducible materials proper-
ties, which, in turn, is deleterious for
sensors and their circuitry.

The purpose of this innovation was to
fabricate a germanium lift-off mask to be
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Carbon nanotubes grown from a sur-
face typically have poor bonding
strength at the interface. A process has
been developed for adding a metal coat
to the surface of carbon nano tubes
(CNTs) through a “wicking” process,
which could lead to an en hanced bond-
ing strength at the interface. This
process involves merging CNTs with in-
dium as a bump-bonding enhancement. 

Classical capillary theory would not
normally allow materials that do not

“wet” carbon or graphite to be drawn
into the spacings by capillary action be-
cause the contact angle is greater than
90°. However, capillary action can be in-
duced through JPL’s ability to fabricate
oriented CNT bundles to desired spac-
ings, and through the use of deposition
techniques and temperature to control
the size and mobility of the liquid metal
streams and associated reservoirs. A re-
flow and plasma cleaning process has
also been developed and demonstrated

to remove indium oxide, and to obtain
smooth coatings on the CNT bundles. 
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A method has been developed for
fabricating high-reflectivity, multi-layer
optical films for the terahertz wave-
length region. A silicon mirror with
99.997-percent reflectivity at 70 µm
wavelength requires an air gap of 17.50
µm, and a silicon thickness of 5.12 µm.
This approach obtains pre-thinned
wafers of about 20 mm thickness in

order to measure their thickness pre-
cisely. A gold annulus of appropriate
thickness is deposited to reach the re-
quired total thickness. This, in turn, has
the central aperture etched down to the
desired final silicon thickness. Also, the
novel Bragg stack optics in this innova-
tion are key to providing Fabry-Perot
spectroscopy and improved spectral

component technologies of unprece-
dented resolution, free spectral range,
and aperture.
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used for patterning thin metal films. The
germanium can either be thermally or
electron-beam evaporated onto Si(001)
wafers. The evaporation rates and de-
posited thicknesses are 0.2 nm/s and 0.5
nm/s, and 620 nm and 500 nm for ther-
mal and electron beam evaporation, re-
spectively. The germanium can be pat-
terned either via polymeric lift-off, using
1 micron of LOR-5a (Microchem) and
1.3 microns of S-1811 (Shipley) photore-

sists, or with lithographic patterning
using 1.3 microns of S-1811 photoresist.
In both cases, the photoresist is exposed
to UV light using a mask aligner (MA-6,
SUSS) and developed in a commercially
available developer. In the case of lift-off,
the germanium is removed in 1165 (Mi-
crochem); in the case of lithographic
patterning, the germanium is removed
in a dilute hydrochloric acid solution.
The photoresist can be stripped in ace-

tone. The desired metal thin film (Nb,
TiN, NbN, Au) is deposited and is lifted-
off in dilute hydrochloric acid. The relia-
bility of the lift-off process is dependent
upon the amount of undercut in the ger-
manium mask during the germanium
patterning process.

This work was done by Ari Brown of God-
dard Space Flight Center. FFurther information
is contained in a TSP (see page 1). GSC-
16147-1


