Status of the JWST Science Instruments

Matt Greenhouse JWST Project Office NASA Goddard Space Flight Center 9 January 2012

ISIM is the science instrument payload of the JWST

- ISIM is one of three elements that together make up the JWST space vehicle
 - Approximately 1.4 metric tons, ~20% of JWST by mass
 - Completed CDR during 2009
- The ISIM system consists of:
 - Four science instruments
 - Nine instrument support systems:
 - Optical metering structure system
 - Electrical Harness System
 - Harness Radiator System
 - ISIM electronics compartment (IEC)
 - ISIM Remote Services Unit (IRSU)
 - Cryogenic Thermal Control System
 - Command and Data Handling System (ICDH)
 - Flight Software System
 - Operations Scripts System

NIRCam will provide the deepest near-infrared images ever and will identify primeval galaxy targets for the NIRSpec

- Developed by the University of Arizona with Lockheed Martin ATC
 - Operating wavelength: 0.6 5.0 microns
 - Spectral resolution: 4, 10, 100 (filters + grism), coronagraph
 - Field of view: 2.2 x 4.4 arc minutes
 - Angular resolution (1 pixel): 32 mas < 2.3 microns, 65 mas > 2.4 microns, coronagraph
 - Detector type: HgCdTe, 2048 x 2048 pixel format, 10 detectors, 40 K passive cooling
 - Refractive optics, Beryllium structure
- Supports OTE wavefront sensing

NIRCam is on schedule for delivery during 2012

Flight model cryo-vacuum testing begins during March

The NIRSpec will acquire spectra of up to 100 galaxies in a single exposure

- Developed by the European Space Technology Center (ESTEC) with Astrium GmbH and Goddard Space Flight Ctr
 - Operating wavelength: 0.6 5.0 microns
 - Spectral resolution: 100, 1000, 3000
 - Field of view: 3.4 x 3.4 arc minutes
 - Aperture control:
 - Programmable micro-shutters, 250,000 pixels
 - Fixed long slits & transit spectroscopy aperture
 - Image slicer (IFU) 3x3 arc sec
 - Detector type: HgCdTe, 2048 x 2048 format, 2 detectors, 37 K passive cooling
 - Reflective optics, SiC structure and optics

Aperture control: 250,000 programmable micro-shutters System at TRL-8 and delivered to ESA June 2010

203 x 463 mas shutter pixel clear aperture, 267 x 528 mas pitch, 4 x 171 x 365 array

NIRSpec delivery expected during 2012

The MIRI instrument will detect key discriminators that distinguish the earliest state of galaxy evolution from more evolved objects

- Developed by a European Consortium and JPL
 - Operating wavelength: 5 29 microns
 - Spectral resolution: 5, 100, 2000
 - Broad-band imagery: 1.9 x 1.4 arc minutes FOV
 - Coronagraphic imagery
 - Spectroscopy:
 - R100 long slit spectroscopy 5 x 0.2 arc sec
 - R2000 spectroscopy 3.5 x 3.5 and 7 x 7 arc sec FOV integral field units
 - Detector type: Si:As, 1024 x 1024 pixel format, 3 detectors, 7 K cryo-cooler
 - Reflective optics, Aluminum structure and optics

Flight unit cryo-vacuum testing completed during July 2011

MIRI is on schedule for delivery during 2012

The FGS-Guider and -NIRSS provide imagery for telescope pointing control & spectroscopy for Ly- α galaxy surveys and extra-solar planet transits

- Developed by the Canadian Space Agency with ComDev
 - Broad-band guider (0.6 5 microns)
 - Field of view: 2.3 x 2.3 arc minutes
 - Science imagery:
 - Slitless spectroscopic imagery (grism)
 - R ~ 150, 0.8 2.25 microns optimized for Ly alpha galaxy surveys
 - R ~ 700, 0.7 2.5 microns optimized for exoplanet transit spectroscopy
 - Sparse aperture interferometric imaging (7 aperture NRM) 3.8, 4.3, and 4.8 microns
 - Angular resolution (1 pixel): 68 mas
 - Detector type: HgCdTe, 2048 x 2048 pixel format, 3 detectors
 - Reflective optics, Aluminum structure and optics

Flight model cryo-vacuum testing currently underway

FGS is on schedule for delivery during 2012

ETU SI integration with ISIM structure proceeding well

ETU SI integration with ISIM structure proceeding well

ISIM will be tested at ~35 K in the GSFC SES chamber using a cryogenic telescope simulator (OSIM)

Presentation to: The American Astronomical Society

OSIM is on schedule for cryo-vac certification during 2012

The JWST will achieve unprecedented sensitivity over the 0.6 – 29 micron spectrum

Learn more at:

www.jwst.nasa.gov
http://webbtelescope.org/webb_telescope/progress_report/

Watch the JWST being built at: www.jwst.nasa.gov/webcam.html

Read about JWST science mission objectives at: http://www.jwst.nasa.gov/science.html http://www.stsci.edu/jwst/science/whitepapers/

Explore your science objectives with the JWST observing time estimator: http://jwstetc.stsci.edu/etc/

Interact with the JWST Science Working Group:

http://www.jwst.nasa.gov/workinggroup.html

9 Jan 2012

The End (of this presentation)

But

with JWST, we will see the beginning of *everything*

The first galaxies The origins of galactic structure The birth of stars The creation of planets and more

Supplemental Charts

ISIM MASTER SCHEDULE

TASK	20 <u>11</u>				2012				2013				2014	
	II	Ш	IV	l I	Ш	Ш	IV	1	II	Ш	IV	I	II	
Reviews/Deliverables		FLT S/C Sim 2A ▲		IES EMTB Δ 11				PER 12	IES OTB∆ 3		ETL ∆ICD 8	I H	PSR 3	FLT ICDH∆ 5
Integration & Test		5	Integration					* *	^{LF1} [★] √ ¹ Cryo1 √ 2	MP, GR, Vibe 6	EMI/EMC, Acoust	Cryo2	Re	Del to es OTIS
Structure			Del			MIRI Shield ▽ 5								
Harness Radiator						Del V 5								
Thermal Control Subsystem			FL	T H/W										
ISIM Electronics Compartment						De V 6								
Optical Simulator (OSIM)					, T R R	De V 6								
NIRSpec		Ŧ												
Microshutter Subsystem Detector Subsystem		▼Spare 4					8							
MIRI				STM		FLT V 4								
NIRCam					PER		FLT V 8							
FGS	PEF	2		ETU	1	F	<u>ц</u> т 6							
ISIM Remote Servicing Unit	3													
ІСДН		ETU (to I&T) 4	FL (to	† #1 [&T) 9		FLT #2 (to I&T) 4								
Flight Software		IC12							IC14		IC14.1			

Presentation to: The American Astronomical Society

Notional Detector Swap Out Schedule Impact

- Risks against remaining "notional" 11 mos. "schedule bath tub" include
 - Instruments are not yet delivered
 - New detectors delayed from Teledyne
 - Unexpected problems during ISIM integration
 - Complexity and scope of the ISIM cryo test program
 - Unexpected problems during detector change out and retest
 - Facility conflicts at GSFC with other projects
- Additionally, project working closely with NGAS to accelerate OTE schedule to provide more schedule flexibility during OTIS testing makes maintaining the current near term ISIM testing a necessity

9 Jan 2012