Alternative Strategies for Exploring Mars and the Moons of Mars

Bret. G. Drake / NASA Johnson Space Center, USA
John D. Baker / Jet Propulsion Laboratory, California Institute of Technology, USA
Stephen J. Hoffman, PhD. / Science Applications International Corporation, USA
Damon Landau, PhD. / Jet Propulsion Laboratory, California Institute of Technology, USA
Stephen A. Voels, PhD. / Science Applications International Corporation, USA

"Set far-reaching exploration milestones. By 2025, begin crewed missions beyond the moon, including sending humans to an asteroid. By the mid-2030s, send humans to orbit Mars and return them safely to Earth"

- Recent discussions have focused on the prospect of conducting a human mission to Mars orbit as a validation test prior to the surface mission
- These strategies are drawn from the historical precedence of the Apollo test missions
- Apollo 8 and 10 flew very similar mission profiles to the eventual surface missions
- But this Apollo analogy may not apply for much harder and longer Mars orbital missions
- Careful examination of the required capabilities and knowledge needed is necessary to fully understand the key issues and applicability of a human mission to Mars orbit prior to a surface mission

Short Stay Mars Vicinity Operations

Mission Sequence

Mars Ballistic Trajectory Classes

Short-Stay Missions (Opposition)

- Variations of missions with short Mars surface stays (20-60 days) and may include Venus swing-by
- Total mission duration typically 540-840 days

- Long-Stay Missions (Conjunction)
- Variations about the minimum energy mission
- Long-stays at Mars (~500 days) and long overall duration (9001000 days)

Example Delta-v versus Mission Duration

Total Crew Mission ΔV Sensitivity

Co-planar Trajectories

Mission Characteristics

- LEO: 400 km x 400 km
- HMO: $250 \mathrm{~km} \times 33,813 \mathrm{~km}$
- Direct Earth Entry: 13 km/s
- Mission opportunities (Earth departure date) occur approximately every 26 months
- Due to the difference in orbits of both the Earth and Mars, the required trajectories vary for each Earth departure date
- Short-stay (opposition) missions demonstrate significantly variation
- Less sensitivity occurs for long-stay (conjunction) missions

TRANSLATING $\Delta \mathrm{V}$ TO MASS

Transportation and Exploration Systems Assumptions

Nuclear Thermal Propulsion

- High-thrust nuclear propulsion
- NERVA-derived common core propulsion (20 t core)
- $3 \times 111 \mathrm{kN}$ engines
- Specific Impulse $=900 \mathrm{~s}$
- All LH2 fuel with zero boil-off
- Drop tanks @ 27\% tank fraction

Multi Purpose Crew Vehicle

- Crew delivery to Earth orbit and high-energy Earth return
- CM inert $=9.8 \mathrm{t}$
- SM inert $=4.5 \mathrm{t}$
- SM specific impulse $=328 \mathrm{~s}$

Solar Electric Propulsion

- Low-thrust with solar power
- Spacecraft alpha ~30 kg/kw
- Specific impulse $=\mathbf{1 8 0 0 - 4 0 0 0} \mathrm{s}$
- $X e$ tank fraction $=5 \%$
- Total power varies

Space Launch System

- Gross Performance ~ 130 t
- Net Performance ~ 120.4 t
- Performance estimates to negative perigee conditions: (-87 km x 241 km)

Deep Space Habitat

- Support a crew of 4-6 from 365-1100 days
- Mass Range : 28-65 t
- Consumables loaded based on crew size \& mission duration

Nuclear Electric Propulsion

- Low-thrust with nuclear power
- Spacecraft alpha $\sim 20 \mathrm{~kg} / \mathrm{kw}$
- Specific impulse $=\mathbf{1 8 0 0 - 4 0 0 0} \mathrm{s}$
- Xe tank fraction $=5 \%$
- Total power varies

Mars Landers

- Parametric sizing of entry and landing systems
- Inflatable (HIAD) entry system assumed
- Wet lander mass: 89-113 t

Opposition Class Missions Crew Vehicle Mass

With 60-Days at Mars

Conjunction Class Missions Crew Vehicle Mass

Total Mission Durations Approximately 1,100 Days

Conjunction Class Missions Crew Vehicle Mass

Shortening the One-Way Transit Times - Nuclear Thermal Propulsion

- For the Conjunction Class missions, the stay at Mars can be lengthened to allow faster one-way transits to and from Mars
- Practical limits exist, due to the physics of the trajectories
- The limits are dependent on the propulsion technology choice
- The range of practical transits for the Nuclear Thermal Propulsion depicted here
- Transit times also dependent on Earth departure year

ADDITIONAL MISSION DESIGN CONSIDERATIONS

Short Stay Orbital Operations Concept

High-Thrust Missions

Key Takeaways

- Mars Orbital Missions
- Mars orbital missions, including exploration of the moons of Mars, are conducted entirely in deep-space
- Reducing the exposure of the mission crew to the hazards of deep-space is of prime concern for these missions
- Practical considerations (transportation technology and number of launches) will limit mission durations to not much less than 600 days. Thus, human health issues cannot be obviated by propulsion technology alone

- If there is no true difference between 600 and 900 days from a human health perspective, then long-stay (conjunction class missions) should be used

- Mars Surface Missions

- Application of short-stay opposition class missions is not so clear
- Short-surface stay alone is insufficient to ameliorate the human health concerns (zero-g and radiation)
- It is anticipated, though yet to be confirmed, that the surface environment of Mars (partial gravity and radiation) may provide sufficient human health mitigation for long-stay missions
- Landing large payloads remains a key challenge for Mars surface missions, both short and long stay

