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1. INTRODUCTION 

This paper describes the new measurements - made in 2010-2011 - of the dielectric constant 

of seawater at 1.413 GHz using a resonant cavity technique. The purpose of these 

measurements is to develop an accurate relationship concerning the dependence of the 

dielectric constant of seawater on temperature and salinity for use by the Aquarius inversion 

algorithm. Aquarius is a NASA/CONAE satellite mission launched in June of 2011 with the 

primary mission of measuring global sea surface salinity with a 1.413 GHz radiometer to an 

accuracy of 0.2 psu.   

A brass microwave cavity resonant at 1.413 GHz has been used to measure the dielectric 

constant of seawater. The seawater is introduced into the cavity through a capillary glass tube 

having an inner diameter of 0.1 mm. The change of resonant frequency and the cavity Q value 

are used to determine the real and imaginary parts of the dielectric constant of seawater. 

Measurements are automated with Visual Basic software developed at the George 

Washington University. 

In this paper, new results from measurements made since September 2010 will be presented 

for salinities of 30, 35 and 38 psu with a temperature range of 0oC to 35o C in intervals of 5o C. 

These measurements are more accurate than earlier measurements made in 2008[1]. The new 

results will be compared to the Klein-Swift (KS) and Meissner-Wentz (MW) model functions. 

The importance of an accurate model function will be illustrated by using these model 

functions to invert the Aquarius brightness temperature to retrieve the salinity values. The 

salinity values will be compared to co-located insitu data collected by Argo buoys. 



2. RESONANT CAVITY TECHNIQUE 

The resonant cavity technique has been used in the past to make highly accurate dielectric 

measurements.  After introducing the seawater sample into the cavity, the seawater perturbs 

the fields inside the cavity, causing a change in both the resonant frequency and the cavity Q. 

If the perturbation is small, the dielectric constant of the seawater can be retrieved by using 

the following perturbation relations: 
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where   and   are the real and imaginary parts of the relative dielectric constant of the 

seawater sample respectively and C is a calibration constant. The variables f and Q are the 

resonant frequency and the quality factor of the cavity after the sample has been introduced 

into the cavity.  In this work the measurements made by Gregory and Clark of the dielectric 

constant for methanol at 20C are employed as the reference liquid to determine the 

calibration constant C in the above formulas.  

 3.   DESCRIPTION OF THE NEW MEASUREMENTS 

Over the past year and a half, the measurements made in 2008 have been repeated with more 

accuracy, and the measurement range has been increased to include 0C and 5C.  It has been 

observed that the measurement of the calibration constant can be improved by using methanol 

in a capped bottle.  When methanol is exposed to air it accumulates water that changes its 

dielectric constant. By using a capped bottle, the variance of the methanol measurements has 

been reduced to 0.23% compared with a variance of 0.76% found in 2008[1].  In addition, the 

variance in the seawater measurements is decreased by allowing the cavity temperature to 

stabilize for a longer period after it has been changed.  After a change in cavity temperature of 

5C, for example, the system is allowed to stabilize for more than three hours.  As a result, the 

average variance for all seawater measurements is reduced to 0.22 compared with 0.45 in 

2008[1].  Finally, an oxidizing acid (chromic/sulfuric) has been used to dissolve particles 

blocking the capillary tube.  To protect the system, all brass and nylon parts have been 

replaced by stainless steel and Teflon parts respectively. 



4. MEASUREMENT RESULTS 

Selected results for 30psu seawater are presented in Figs 1a and 1b.  In these figures 

 

 
Fig. 1a Real part of the dielectric constant ( '  ) of 30 psu seawater 

 

 
Fig. 1b Imaginary part of the dielectric constant ( ''  ) of 30 psu seawater 

 

the red line represents the George Washington (GW) curves, and each of the points on the red 

curves are based on real data. Each point represents the average result for three or more 

measurements.  The black line represents KS model and the pink line represents MW model. 

For the real part of seawater dielectric constant, it is seen that the GW curve matches KS 

model very closely from 5C to 35C, however at low temperatures the GW curve is about 1-

2% bigger than the KS model results. The GW curve is parallel to the MW curve and about 1% 

bigger for all temperatures.  For imaginary part, GW curve matches the other two curves 

closely from 0C to 30C and is slightly lower at high temperatures. 

Table 1a and Table 1b show the error analysis of the GW measurements in 2011-2010 and 

2008. The total uncertainty is based on three terms that can be represented by the formula: 



 

where 2 ( )SW  is the uncertainty from seawater measurements; 2 ( )MC is the uncertainty for 

the methanol measurements, and 2 ( )refC  is the uncertainty of the reference liquid (methanol) 

measurements.  From the tables, it can be seen that the total uncertainty of   has been 

reduced to 0.26 from a value of 0.75 obtained in 2008[1], and the total uncertainty of has 

been reduced to 0.42 from a value of 0.73 obtained in 2008[1]. 

 
Real Dielectric Constant Uncertainty 

Temp σε(SW) σε(C) σε(ref) σε(total) σε(2008)[1]

0 0.12 0.17 0.14 0.25 - 
5 0.14 0.17 0.14 0.26 - 

10 0.10 0.17 0.14 0.24 0.62 
15 0.20 0.16 0.13 0.29 0.67 
20 0.12 0.16 0.13 0.24 0.63 
25 0.14 0.16 0.13 0.24 0.7 
30 0.22 0.15 0.12 0.29 0.86 
35 0.14 0.15 0.12 0.24 1.02 

Average       0.26 0.75 
Table 1a The comparison of ' uncertainty between new and old measurements 

 
Imaginary Dielectric Constant Uncertainty 

Temp σε(SW) σε(C) σε(ref) σε(total) σε(2008)[1]

0 0.09 0.19 0.08 0.22 - 
5 0.22 0.20 0.09 0.31 - 

10 0.19 0.22 0.1 0.31 0.44 
15 0.28 0.24 0.11 0.38 0.62 
20 0.32 0.26 0.12 0.43 0.53 
25 0.37 0.28 0.13 0.48 0.68 
30 0.50 0.31 0.14 0.60 1.03 
35 0.48 0.34 0.15 0.61 1.06 

Average       0.42 0.73 
Table 1b The comparison of '' uncertainty between new and old measurements 
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