
Test Driven Development of Scientific Models

Tom Clune

Software Systems Support Office
Earth Science Division

NASA Goddard Space Flight Center

May 1, 2012

Tom Clune (SSSO) TDD - NCAR May 1, 2012 1 / 61

Outline

1 Introduction

2 Testing

3 Testing Frameworks

4 Test-Driven Development

5 TDD and Scientific/Technical Software

6 Example

7 pFUnit

Tom Clune (SSSO) TDD - Introduction - NCAR May 1, 2012 2 / 61

The Tightrope Act

Software development should not feel like this

Tom Clune (SSSO) TDD - Introduction - NCAR May 1, 2012 3 / 61

The Tightrope Act

... or even like this

Tom Clune (SSSO) TDD - Introduction - NCAR May 1, 2012 3 / 61

The Tightrope Act

Hopefully something more like this

Tom Clune (SSSO) TDD - Introduction - NCAR May 1, 2012 3 / 61

The Development Cycle

Extend

Fix

Port

Compiles?

Executes?

Looks ok?

Correct?

Tom Clune (SSSO) TDD - Introduction - NCAR May 1, 2012 4 / 61

The Development Cycle

Extend

Fix

Port

Compiles?

Executes?

Looks ok?

Correct?

Tom Clune (SSSO) TDD - Introduction - NCAR May 1, 2012 4 / 61

The Development Cycle

Extend

Fix

Port

Compiles?

Executes?

Looks ok?

Correct?

Tom Clune (SSSO) TDD - Introduction - NCAR May 1, 2012 4 / 61

The Development Cycle

Extend

Fix

Port

Compiles?

Executes?

Looks ok?

Correct?

Tom Clune (SSSO) TDD - Introduction - NCAR May 1, 2012 4 / 61

The Development Cycle

Extend

Fix

Port

Compiles?

Executes?

Looks ok?

Correct?

Tom Clune (SSSO) TDD - Introduction - NCAR May 1, 2012 4 / 61

The Development Cycle

Extend

Fix

Port

Compiles?

Executes?

Looks ok?

Correct?

Tom Clune (SSSO) TDD - Introduction - NCAR May 1, 2012 4 / 61

The Development Cycle

Extend

Fix

Port

Compiles?

Executes?

Looks ok?

Correct?

Tom Clune (SSSO) TDD - Introduction - NCAR May 1, 2012 4 / 61

The Development Cycle

Extend

Fix

Port

Compiles?

Executes?

Looks ok?

Correct?

Tom Clune (SSSO) TDD - Introduction - NCAR May 1, 2012 4 / 61

Natural Time Scales

Design
Edit source
Compilation
Batch
waiting in queue
Execution
Analysis

Tom Clune (SSSO) TDD - Introduction - NCAR May 1, 2012 5 / 61

Some observations

Risk grows with magnitude of implementation step

Magnitude of implementation step grows with cost of
verification/validation

Conclusion:
Optimize productivity by reducing cost of verification!

Tom Clune (SSSO) TDD - Introduction - NCAR May 1, 2012 6 / 61

Some observations

Risk grows with magnitude of implementation step

Magnitude of implementation step grows with cost of
verification/validation

Conclusion:
Optimize productivity by reducing cost of verification!

Tom Clune (SSSO) TDD - Introduction - NCAR May 1, 2012 6 / 61

Outline

1 Introduction

2 Testing

3 Testing Frameworks

4 Test-Driven Development

5 TDD and Scientific/Technical Software

6 Example

7 pFUnit

Tom Clune (SSSO) TDD - Testing - NCAR May 1, 2012 7 / 61

Testing

Tom Clune (SSSO) TDD - Testing - NCAR May 1, 2012 8 / 61

Test Harness - work in safety

Collection of tests that constrain system

Detects unintended changes

Localizes defects

Improves developer confidence

Decreases risk from change

Tom Clune (SSSO) TDD - Testing - NCAR May 1, 2012 9 / 61

Test Harness - work in safety

Collection of tests that constrain system

Detects unintended changes

Localizes defects

Improves developer confidence

Decreases risk from change

Tom Clune (SSSO) TDD - Testing - NCAR May 1, 2012 9 / 61

Test Harness - work in safety

Collection of tests that constrain system

Detects unintended changes

Localizes defects

Improves developer confidence

Decreases risk from change

Tom Clune (SSSO) TDD - Testing - NCAR May 1, 2012 9 / 61

Test Harness - work in safety

Collection of tests that constrain system

Detects unintended changes

Localizes defects

Improves developer confidence

Decreases risk from change

Tom Clune (SSSO) TDD - Testing - NCAR May 1, 2012 9 / 61

Test Harness - work in safety

Collection of tests that constrain system

Detects unintended changes

Localizes defects

Improves developer confidence

Decreases risk from change

Tom Clune (SSSO) TDD - Testing - NCAR May 1, 2012 9 / 61

Do you write legacy code?

“The main thing that distinguishes legacy code from non-legacy code is
tests, or rather a lack of tests.”

Michael Feathers
Working Effectively with Legacy Code

Lack of tests leads to fear of introducing
subtle bugs and/or changing things
inadvertently.

Programming on a tightrope

This is also a barrier to involving pure

software engineers in the development of

our models.

Tom Clune (SSSO) TDD - Testing - NCAR May 1, 2012 10 / 61

Do you write legacy code?

“The main thing that distinguishes legacy code from non-legacy code is
tests, or rather a lack of tests.”

Michael Feathers
Working Effectively with Legacy Code

Lack of tests leads to fear of introducing
subtle bugs and/or changing things
inadvertently.

Programming on a tightrope

This is also a barrier to involving pure

software engineers in the development of

our models.

Tom Clune (SSSO) TDD - Testing - NCAR May 1, 2012 10 / 61

Do you write legacy code?

“The main thing that distinguishes legacy code from non-legacy code is
tests, or rather a lack of tests.”

Michael Feathers
Working Effectively with Legacy Code

Lack of tests leads to fear of introducing
subtle bugs and/or changing things
inadvertently.

Programming on a tightrope

This is also a barrier to involving pure

software engineers in the development of

our models.

Tom Clune (SSSO) TDD - Testing - NCAR May 1, 2012 10 / 61

Do you write legacy code?

“The main thing that distinguishes legacy code from non-legacy code is
tests, or rather a lack of tests.”

Michael Feathers
Working Effectively with Legacy Code

Lack of tests leads to fear of introducing
subtle bugs and/or changing things
inadvertently.

Programming on a tightrope

This is also a barrier to involving pure

software engineers in the development of

our models.

Tom Clune (SSSO) TDD - Testing - NCAR May 1, 2012 10 / 61

Excuses, excuses ...

Takes too much time to write tests

Too difficult to maintain tests

It takes too long to run the tests

It is not my job

“Correct” behavior is unknown

http://java.dzone.com/articles/unit-test-excuses

- James Sugrue

Tom Clune (SSSO) TDD - Testing - NCAR May 1, 2012 11 / 61

http://java.dzone.com/articles/unit-test-excuses

Excuses, excuses ...

Takes too much time to write tests

Too difficult to maintain tests

It takes too long to run the tests

It is not my job

“Correct” behavior is unknown

http://java.dzone.com/articles/unit-test-excuses

- James Sugrue

Tom Clune (SSSO) TDD - Testing - NCAR May 1, 2012 11 / 61

http://java.dzone.com/articles/unit-test-excuses

Excuses, excuses ...

Takes too much time to write tests

Too difficult to maintain tests

It takes too long to run the tests

It is not my job

“Correct” behavior is unknown

http://java.dzone.com/articles/unit-test-excuses

- James Sugrue

Tom Clune (SSSO) TDD - Testing - NCAR May 1, 2012 11 / 61

http://java.dzone.com/articles/unit-test-excuses

Excuses, excuses ...

Takes too much time to write tests

Too difficult to maintain tests

It takes too long to run the tests

It is not my job

“Correct” behavior is unknown

http://java.dzone.com/articles/unit-test-excuses

- James Sugrue

Tom Clune (SSSO) TDD - Testing - NCAR May 1, 2012 11 / 61

http://java.dzone.com/articles/unit-test-excuses

Excuses, excuses ...

Takes too much time to write tests

Too difficult to maintain tests

It takes too long to run the tests

It is not my job

“Correct” behavior is unknown

http://java.dzone.com/articles/unit-test-excuses

- James Sugrue

Tom Clune (SSSO) TDD - Testing - NCAR May 1, 2012 11 / 61

http://java.dzone.com/articles/unit-test-excuses

Excuses, excuses ...

Takes too much time to write tests

Too difficult to maintain tests

It takes too long to run the tests

It is not my job

“Correct” behavior is unknown

http://java.dzone.com/articles/unit-test-excuses

- James Sugrue

Tom Clune (SSSO) TDD - Testing - NCAR May 1, 2012 11 / 61

http://java.dzone.com/articles/unit-test-excuses

Just what is a test anyway?

Tests can exist in many forms

Conditional termination:
IF (PA(I , J)+PTOP.GT. 1 2 0 0 .) &

c a l l s t o p m o d e l (’ADVECM: P r e s s u r e d i a g n o s t i c e r r o r ’ , 1 1)

Diagnostic print statement
p r i n t ∗ , ’ l o s s o f mass = ’ , d e l t a M a s s

Visualization of output
Temp1

5 10 15

10

20

30

40

50

60

Temp2

5 10 15

10

20

30

40

50

60

Difference

5 10 15

10

20

30

40

50

60

Student Version of MATLAB

Tom Clune (SSSO) TDD - Testing - NCAR May 1, 2012 13 / 61

Analogy with Scientific Method?

Reality −→ Requirements
Constraints: theory and data −→ Constraints: tests
Formulate hypothesis −→ Trial implementation
Perform experiment −→ Run tests
Refine hypothesis −→ Refine implementation

Tom Clune (SSSO) TDD - Testing - NCAR May 1, 2012 14 / 61

Properties of good tests

Isolating

I Test failure indicates location in source code

Orthogonal

I Each defect results in failure of small number of tests

Complete

I Each bit of functionality covered by at least one test

Independent

I No side effects
I Test order does not matter
I Corollary: cannot terminate execution

Frugal

I Run quickly
I Small memory, etc.

Automated and repeatable
Clear intent

Tom Clune (SSSO) TDD - Testing - NCAR May 1, 2012 15 / 61

Properties of good tests

Isolating
I Test failure indicates location in source code

Orthogonal

I Each defect results in failure of small number of tests

Complete

I Each bit of functionality covered by at least one test

Independent

I No side effects
I Test order does not matter
I Corollary: cannot terminate execution

Frugal

I Run quickly
I Small memory, etc.

Automated and repeatable
Clear intent

Tom Clune (SSSO) TDD - Testing - NCAR May 1, 2012 15 / 61

Properties of good tests

Isolating
I Test failure indicates location in source code

Orthogonal
I Each defect results in failure of small number of tests

Complete

I Each bit of functionality covered by at least one test

Independent

I No side effects
I Test order does not matter
I Corollary: cannot terminate execution

Frugal

I Run quickly
I Small memory, etc.

Automated and repeatable
Clear intent

Tom Clune (SSSO) TDD - Testing - NCAR May 1, 2012 15 / 61

Properties of good tests

Isolating
I Test failure indicates location in source code

Orthogonal
I Each defect results in failure of small number of tests

Complete
I Each bit of functionality covered by at least one test

Independent

I No side effects
I Test order does not matter
I Corollary: cannot terminate execution

Frugal

I Run quickly
I Small memory, etc.

Automated and repeatable
Clear intent

Tom Clune (SSSO) TDD - Testing - NCAR May 1, 2012 15 / 61

Properties of good tests

Isolating
I Test failure indicates location in source code

Orthogonal
I Each defect results in failure of small number of tests

Complete
I Each bit of functionality covered by at least one test

Independent
I No side effects
I Test order does not matter
I Corollary: cannot terminate execution

Frugal

I Run quickly
I Small memory, etc.

Automated and repeatable
Clear intent

Tom Clune (SSSO) TDD - Testing - NCAR May 1, 2012 15 / 61

Properties of good tests

Isolating
I Test failure indicates location in source code

Orthogonal
I Each defect results in failure of small number of tests

Complete
I Each bit of functionality covered by at least one test

Independent
I No side effects
I Test order does not matter
I Corollary: cannot terminate execution

Frugal
I Run quickly
I Small memory, etc.

Automated and repeatable
Clear intent

Tom Clune (SSSO) TDD - Testing - NCAR May 1, 2012 15 / 61

Properties of good tests

Isolating
I Test failure indicates location in source code

Orthogonal
I Each defect results in failure of small number of tests

Complete
I Each bit of functionality covered by at least one test

Independent
I No side effects
I Test order does not matter
I Corollary: cannot terminate execution

Frugal
I Run quickly
I Small memory, etc.

Automated and repeatable

Clear intent

Tom Clune (SSSO) TDD - Testing - NCAR May 1, 2012 15 / 61

Properties of good tests

Isolating
I Test failure indicates location in source code

Orthogonal
I Each defect results in failure of small number of tests

Complete
I Each bit of functionality covered by at least one test

Independent
I No side effects
I Test order does not matter
I Corollary: cannot terminate execution

Frugal
I Run quickly
I Small memory, etc.

Automated and repeatable
Clear intent

Tom Clune (SSSO) TDD - Testing - NCAR May 1, 2012 15 / 61

Anatomy of a Software Test Procedure

testTrajectory() ! s = 1
2 at2

a = 2.; t = 3.

s = trajectory(a, t)

call assertEqual (9., s)call assertEqual (9., trajectory (2.,3.))

! no op

Tom Clune (SSSO) TDD - Testing - NCAR May 1, 2012 17 / 61

Anatomy of a Software Test Procedure

testTrajectory() ! s = 1
2 at2

a = 2.; t = 3.

s = trajectory(a, t)

call assertEqual (9., s)call assertEqual (9., trajectory (2.,3.))

! no op

Tom Clune (SSSO) TDD - Testing - NCAR May 1, 2012 17 / 61

Anatomy of a Software Test Procedure

testTrajectory() ! s = 1
2 at2

a = 2.; t = 3.

s = trajectory(a, t)

call assertEqual (9., s)call assertEqual (9., trajectory (2.,3.))

! no op

Tom Clune (SSSO) TDD - Testing - NCAR May 1, 2012 17 / 61

Anatomy of a Software Test Procedure

testTrajectory() ! s = 1
2 at2

a = 2.; t = 3.

s = trajectory(a, t)

call assertEqual (9., s)call assertEqual (9., trajectory (2.,3.))

! no op

Tom Clune (SSSO) TDD - Testing - NCAR May 1, 2012 17 / 61

Anatomy of a Software Test Procedure

testTrajectory() ! s = 1
2 at2

a = 2.; t = 3.

s = trajectory(a, t)

call assertEqual (9., s)

call assertEqual (9., trajectory (2.,3.))

! no op

Tom Clune (SSSO) TDD - Testing - NCAR May 1, 2012 17 / 61

Anatomy of a Software Test Procedure

testTrajectory() ! s = 1
2 at2

a = 2.; t = 3.

s = trajectory(a, t)

call assertEqual (9., s)

call assertEqual (9., trajectory (2.,3.))

! no op

Tom Clune (SSSO) TDD - Testing - NCAR May 1, 2012 17 / 61

Anatomy of a Software Test Procedure

testTrajectory() ! s = 1
2 at2

a = 2.; t = 3.

s = trajectory(a, t)

call assertEqual (9., s)

call assertEqual (9., trajectory (2.,3.))

! no op

Tom Clune (SSSO) TDD - Testing - NCAR May 1, 2012 17 / 61

Outline

1 Introduction

2 Testing

3 Testing Frameworks

4 Test-Driven Development

5 TDD and Scientific/Technical Software

6 Example

7 pFUnit

Tom Clune (SSSO) TDD - Testing Frameworks - NCAR May 1, 2012 18 / 61

Testing Frameworks

Provide infrastructure to radically simplify:
I Creating test routines (Test cases)
I Running collections of tests (Test suites)
I Summarizing results

Key feature is collection of assert methods
I Used to express expected results

c a l l a s s e r t E q u a l (1 20 , f a c t o r i a l (5))

Generally specific to programming language (xUnit)
I Java (JUnit)
I Pnython (pyUnit)
I C++ (cxxUnit, cppUnit)
I Fortran (FRUIT, FUNIT, pFUnit)

Tom Clune (SSSO) TDD - Testing Frameworks - NCAR May 1, 2012 20 / 61

GUI - JUnit in Eclipse

Tom Clune (SSSO) TDD - Testing Frameworks - NCAR May 1, 2012 21 / 61

Outline

1 Introduction

2 Testing

3 Testing Frameworks

4 Test-Driven Development

5 TDD and Scientific/Technical Software

6 Example

7 pFUnit

Tom Clune (SSSO) TDD - Test-Driven Development - NCAR May 1, 2012 22 / 61

(Somewhat) New Paradigm: TDD

Old paradigm:

Tests written by separate team (black box testing)

Tests written after implementation

Consequences:

Testing schedule compressed for release

Defects detected late in development ($$)

New paradigm

Developers write the tests (white box testing)

Tests written before production code

Enabled by emergence of strong unit testing frameworks

Tom Clune (SSSO) TDD - Test-Driven Development - NCAR May 1, 2012 23 / 61

(Somewhat) New Paradigm: TDD

Old paradigm:

Tests written by separate team (black box testing)

Tests written after implementation

Consequences:

Testing schedule compressed for release

Defects detected late in development ($$)

New paradigm

Developers write the tests (white box testing)

Tests written before production code

Enabled by emergence of strong unit testing frameworks

Tom Clune (SSSO) TDD - Test-Driven Development - NCAR May 1, 2012 23 / 61

(Somewhat) New Paradigm: TDD

Old paradigm:

Tests written by separate team (black box testing)

Tests written after implementation

Consequences:

Testing schedule compressed for release

Defects detected late in development ($$)

New paradigm

Developers write the tests (white box testing)

Tests written before production code

Enabled by emergence of strong unit testing frameworks

Tom Clune (SSSO) TDD - Test-Driven Development - NCAR May 1, 2012 23 / 61

The TDD cycle

Tom Clune (SSSO) TDD - Test-Driven Development - NCAR May 1, 2012 24 / 61

Benefits of TDD

High reliability

Excellent test coverage

Always “ready-to-ship”

Tests act as maintainable documentation
I Test shows real use case scenario
I Test is maintained through TDD process

Less time spent debugging

Reduced stress / improved confidence

Productivity

Predictable schedule

Porting

Quality implementation?

Tom Clune (SSSO) TDD - Test-Driven Development - NCAR May 1, 2012 25 / 61

Benefits of TDD

High reliability

Excellent test coverage

Always “ready-to-ship”

Tests act as maintainable documentation
I Test shows real use case scenario
I Test is maintained through TDD process

Less time spent debugging

Reduced stress / improved confidence

Productivity

Predictable schedule

Porting

Quality implementation?

Tom Clune (SSSO) TDD - Test-Driven Development - NCAR May 1, 2012 25 / 61

Benefits of TDD

High reliability

Excellent test coverage

Always “ready-to-ship”

Tests act as maintainable documentation
I Test shows real use case scenario
I Test is maintained through TDD process

Less time spent debugging

Reduced stress / improved confidence

Productivity

Predictable schedule

Porting

Quality implementation?

Tom Clune (SSSO) TDD - Test-Driven Development - NCAR May 1, 2012 25 / 61

Benefits of TDD

High reliability

Excellent test coverage

Always “ready-to-ship”

Tests act as maintainable documentation
I Test shows real use case scenario
I Test is maintained through TDD process

Less time spent debugging

Reduced stress / improved confidence

Productivity

Predictable schedule

Porting

Quality implementation?

Tom Clune (SSSO) TDD - Test-Driven Development - NCAR May 1, 2012 25 / 61

Benefits of TDD

High reliability

Excellent test coverage

Always “ready-to-ship”

Tests act as maintainable documentation
I Test shows real use case scenario
I Test is maintained through TDD process

Less time spent debugging

Reduced stress / improved confidence

Productivity

Predictable schedule

Porting

Quality implementation?

Tom Clune (SSSO) TDD - Test-Driven Development - NCAR May 1, 2012 25 / 61

Benefits of TDD

High reliability

Excellent test coverage

Always “ready-to-ship”

Tests act as maintainable documentation
I Test shows real use case scenario
I Test is maintained through TDD process

Less time spent debugging

Reduced stress / improved confidence

Productivity

Predictable schedule

Porting

Quality implementation?

Tom Clune (SSSO) TDD - Test-Driven Development - NCAR May 1, 2012 25 / 61

Benefits of TDD

High reliability

Excellent test coverage

Always “ready-to-ship”

Tests act as maintainable documentation
I Test shows real use case scenario
I Test is maintained through TDD process

Less time spent debugging

Reduced stress / improved confidence

Productivity

Predictable schedule

Porting

Quality implementation?

Tom Clune (SSSO) TDD - Test-Driven Development - NCAR May 1, 2012 25 / 61

Benefits of TDD

High reliability

Excellent test coverage

Always “ready-to-ship”

Tests act as maintainable documentation
I Test shows real use case scenario
I Test is maintained through TDD process

Less time spent debugging

Reduced stress / improved confidence

Productivity

Predictable schedule

Porting

Quality implementation?

Tom Clune (SSSO) TDD - Test-Driven Development - NCAR May 1, 2012 25 / 61

Benefits of TDD

High reliability

Excellent test coverage

Always “ready-to-ship”

Tests act as maintainable documentation
I Test shows real use case scenario
I Test is maintained through TDD process

Less time spent debugging

Reduced stress / improved confidence

Productivity

Predictable schedule

Porting

Quality implementation?

Tom Clune (SSSO) TDD - Test-Driven Development - NCAR May 1, 2012 25 / 61

Benefits of TDD

High reliability

Excellent test coverage

Always “ready-to-ship”

Tests act as maintainable documentation
I Test shows real use case scenario
I Test is maintained through TDD process

Less time spent debugging

Reduced stress / improved confidence

Productivity

Predictable schedule

Porting

Quality implementation?

Tom Clune (SSSO) TDD - Test-Driven Development - NCAR May 1, 2012 25 / 61

Benefits of TDD

High reliability

Excellent test coverage

Always “ready-to-ship”

Tests act as maintainable documentation
I Test shows real use case scenario
I Test is maintained through TDD process

Less time spent debugging

Reduced stress / improved confidence

Productivity

Predictable schedule

Porting

Quality implementation?

Tom Clune (SSSO) TDD - Test-Driven Development - NCAR May 1, 2012 25 / 61

Anecdotal Testimony

Many professional SEs are initially skeptical
I High percentage refuse to go back to the old way after only a few days

of exposure.

Some projects drop bug tracking as unnecessary

Often difficult to sell to management
I “What? More lines of code?”

Tom Clune (SSSO) TDD - Test-Driven Development - NCAR May 1, 2012 26 / 61

Not a panacea

Requires training, practice, and discipline

Need strong tools (framework + refactoring)

Does not invent new algorithms (e.g. FFT)
I No such thing as magic

Maintaining tests difficult during a major re-engineering effort.

I But isnt the alternative is even worse?!!

Tom Clune (SSSO) TDD - Test-Driven Development - NCAR May 1, 2012 27 / 61

Not a panacea

Requires training, practice, and discipline

Need strong tools (framework + refactoring)

Does not invent new algorithms (e.g. FFT)
I No such thing as magic

Maintaining tests difficult during a major re-engineering effort.

I But isnt the alternative is even worse?!!

Tom Clune (SSSO) TDD - Test-Driven Development - NCAR May 1, 2012 27 / 61

Not a panacea

Requires training, practice, and discipline

Need strong tools (framework + refactoring)

Does not invent new algorithms (e.g. FFT)

I No such thing as magic

Maintaining tests difficult during a major re-engineering effort.

I But isnt the alternative is even worse?!!

Tom Clune (SSSO) TDD - Test-Driven Development - NCAR May 1, 2012 27 / 61

Not a panacea

Requires training, practice, and discipline

Need strong tools (framework + refactoring)

Does not invent new algorithms (e.g. FFT)
I No such thing as magic

Maintaining tests difficult during a major re-engineering effort.

I But isnt the alternative is even worse?!!

Tom Clune (SSSO) TDD - Test-Driven Development - NCAR May 1, 2012 27 / 61

Not a panacea

Requires training, practice, and discipline

Need strong tools (framework + refactoring)

Does not invent new algorithms (e.g. FFT)
I No such thing as magic

Maintaining tests difficult during a major re-engineering effort.

I But isnt the alternative is even worse?!!

Tom Clune (SSSO) TDD - Test-Driven Development - NCAR May 1, 2012 27 / 61

Not a panacea

Requires training, practice, and discipline

Need strong tools (framework + refactoring)

Does not invent new algorithms (e.g. FFT)
I No such thing as magic

Maintaining tests difficult during a major re-engineering effort.
I But isnt the alternative is even worse?!!

Tom Clune (SSSO) TDD - Test-Driven Development - NCAR May 1, 2012 27 / 61

Outline

1 Introduction

2 Testing

3 Testing Frameworks

4 Test-Driven Development

5 TDD and Scientific/Technical Software

6 Example

7 pFUnit

Tom Clune (SSSO) TDD - TDD and Scientific/Technical Software - NCAR May 1, 2012 28 / 61

The Challenge of Technical Software

Serious objections have been raised:

I Difficult to estimate error
F Roundoff
F Truncation

I Stability/Nonlinearity
F Problems that occur only after long integrations

I Insufficient analytic cases
I Test would just be re-expression of implementation

F Irreducible complexity?

These concerns largely reveal
I Lack of experience with software testing
I Confusion between roles of verification vs validation
I Burden of legacy software (long procedures; complex interfaces)

Tom Clune (SSSO) TDD - TDD and Scientific/Technical Software - NCAR May 1, 2012 29 / 61

The Challenge of Technical Software

Serious objections have been raised:
I Difficult to estimate error

F Roundoff
F Truncation

I Stability/Nonlinearity
F Problems that occur only after long integrations

I Insufficient analytic cases
I Test would just be re-expression of implementation

F Irreducible complexity?

These concerns largely reveal
I Lack of experience with software testing
I Confusion between roles of verification vs validation
I Burden of legacy software (long procedures; complex interfaces)

Tom Clune (SSSO) TDD - TDD and Scientific/Technical Software - NCAR May 1, 2012 29 / 61

The Challenge of Technical Software

Serious objections have been raised:
I Difficult to estimate error

F Roundoff
F Truncation

I Stability/Nonlinearity
F Problems that occur only after long integrations

I Insufficient analytic cases
I Test would just be re-expression of implementation

F Irreducible complexity?

These concerns largely reveal
I Lack of experience with software testing
I Confusion between roles of verification vs validation
I Burden of legacy software (long procedures; complex interfaces)

Tom Clune (SSSO) TDD - TDD and Scientific/Technical Software - NCAR May 1, 2012 29 / 61

The Challenge of Technical Software

Serious objections have been raised:
I Difficult to estimate error

F Roundoff
F Truncation

I Stability/Nonlinearity
F Problems that occur only after long integrations

I Insufficient analytic cases

I Test would just be re-expression of implementation
F Irreducible complexity?

These concerns largely reveal
I Lack of experience with software testing
I Confusion between roles of verification vs validation
I Burden of legacy software (long procedures; complex interfaces)

Tom Clune (SSSO) TDD - TDD and Scientific/Technical Software - NCAR May 1, 2012 29 / 61

The Challenge of Technical Software

Serious objections have been raised:
I Difficult to estimate error

F Roundoff
F Truncation

I Stability/Nonlinearity
F Problems that occur only after long integrations

I Insufficient analytic cases
I Test would just be re-expression of implementation

F Irreducible complexity?

These concerns largely reveal
I Lack of experience with software testing
I Confusion between roles of verification vs validation
I Burden of legacy software (long procedures; complex interfaces)

Tom Clune (SSSO) TDD - TDD and Scientific/Technical Software - NCAR May 1, 2012 29 / 61

The Challenge of Technical Software

Serious objections have been raised:
I Difficult to estimate error

F Roundoff
F Truncation

I Stability/Nonlinearity
F Problems that occur only after long integrations

I Insufficient analytic cases
I Test would just be re-expression of implementation

F Irreducible complexity?

These concerns largely reveal

I Lack of experience with software testing
I Confusion between roles of verification vs validation
I Burden of legacy software (long procedures; complex interfaces)

Tom Clune (SSSO) TDD - TDD and Scientific/Technical Software - NCAR May 1, 2012 29 / 61

The Challenge of Technical Software

Serious objections have been raised:
I Difficult to estimate error

F Roundoff
F Truncation

I Stability/Nonlinearity
F Problems that occur only after long integrations

I Insufficient analytic cases
I Test would just be re-expression of implementation

F Irreducible complexity?

These concerns largely reveal
I Lack of experience with software testing

I Confusion between roles of verification vs validation
I Burden of legacy software (long procedures; complex interfaces)

Tom Clune (SSSO) TDD - TDD and Scientific/Technical Software - NCAR May 1, 2012 29 / 61

The Challenge of Technical Software

Serious objections have been raised:
I Difficult to estimate error

F Roundoff
F Truncation

I Stability/Nonlinearity
F Problems that occur only after long integrations

I Insufficient analytic cases
I Test would just be re-expression of implementation

F Irreducible complexity?

These concerns largely reveal
I Lack of experience with software testing
I Confusion between roles of verification vs validation

I Burden of legacy software (long procedures; complex interfaces)

Tom Clune (SSSO) TDD - TDD and Scientific/Technical Software - NCAR May 1, 2012 29 / 61

The Challenge of Technical Software

Serious objections have been raised:
I Difficult to estimate error

F Roundoff
F Truncation

I Stability/Nonlinearity
F Problems that occur only after long integrations

I Insufficient analytic cases
I Test would just be re-expression of implementation

F Irreducible complexity?

These concerns largely reveal
I Lack of experience with software testing
I Confusion between roles of verification vs validation
I Burden of legacy software (long procedures; complex interfaces)

Tom Clune (SSSO) TDD - TDD and Scientific/Technical Software - NCAR May 1, 2012 29 / 61

The Challenge of Technical Software

Serious objections have been raised:
I Difficult to estimate error

F Roundoff
F Truncation

I Stability/Nonlinearity
F Problems that occur only after long integrations

I Insufficient analytic cases
I Test would just be re-expression of implementation

F Irreducible complexity?

These concerns largely reveal
I Lack of experience with software testing
I Confusion between roles of verification vs validation
I Burden of legacy software (long procedures; complex interfaces)

Tom Clune (SSSO) TDD - TDD and Scientific/Technical Software - NCAR May 1, 2012 29 / 61

Software Testing vs Science/Validation

Software tests should only check implementation.

Only a subset tests will express external requirements (i.e.
implementation independent)

Other tests will reflect implementation choices

Use “convenient” input values - not realistic values

Consider tests for an ODE integrator implemented with RK4

A generic test may be for a constant flow field - any integrator should
get an “exact” answer

A RK4 specific test may provide an artificial “flow field” that returns
the values 1.,2.,3.,4. on subsequent calls independent of the
coordinates

Tom Clune (SSSO) TDD - TDD and Scientific/Technical Software - NCAR May 1, 2012 30 / 61

Test by Layers

Do test

Proper # of iterations

Pieces called in correct order

Passing of data between
components

Do NOT test

Calculations inside components

Much easier to do in practice with objects than with procedures.

Tom Clune (SSSO) TDD - TDD and Scientific/Technical Software - NCAR May 1, 2012 31 / 61

Numerical Tolerance

For testing numerical results, a good estimate for the tolerance is
necessary:

If the tolerance is too low, then the test may fail for uninteresting
reasons.

If the tolerance is too high, then the test may have no teeth

Unfortunately ...

Error estimates are seldom available for complex algorithms

And of those, usually we just have an asymtotic form with unknown
leading coefficient!

Tom Clune (SSSO) TDD - TDD and Scientific/Technical Software - NCAR May 1, 2012 32 / 61

Numerical Tolerance

For testing numerical results, a good estimate for the tolerance is
necessary:

If the tolerance is too low, then the test may fail for uninteresting
reasons.

If the tolerance is too high, then the test may have no teeth

Unfortunately ...

Error estimates are seldom available for complex algorithms

And of those, usually we just have an asymtotic form with unknown
leading coefficient!

Tom Clune (SSSO) TDD - TDD and Scientific/Technical Software - NCAR May 1, 2012 32 / 61

Numerical Tolerance

For testing numerical results, a good estimate for the tolerance is
necessary:

If the tolerance is too low, then the test may fail for uninteresting
reasons.

If the tolerance is too high, then the test may have no teeth

Unfortunately ...

Error estimates are seldom available for complex algorithms

And of those, usually we just have an asymtotic form with unknown
leading coefficient!

Tom Clune (SSSO) TDD - TDD and Scientific/Technical Software - NCAR May 1, 2012 32 / 61

Numerical Tolerance

For testing numerical results, a good estimate for the tolerance is
necessary:

If the tolerance is too low, then the test may fail for uninteresting
reasons.

If the tolerance is too high, then the test may have no teeth

Unfortunately ...

Error estimates are seldom available for complex algorithms

And of those, usually we just have an asymtotic form with unknown
leading coefficient!

Tom Clune (SSSO) TDD - TDD and Scientific/Technical Software - NCAR May 1, 2012 32 / 61

Numerical Tolerance

For testing numerical results, a good estimate for the tolerance is
necessary:

If the tolerance is too low, then the test may fail for uninteresting
reasons.

If the tolerance is too high, then the test may have no teeth

Unfortunately ...

Error estimates are seldom available for complex algorithms

And of those, usually we just have an asymtotic form with unknown
leading coefficient!

Tom Clune (SSSO) TDD - TDD and Scientific/Technical Software - NCAR May 1, 2012 32 / 61

Numerical tolerance (cont’d)

Observations

1 machine epsilon is a good estimate for most short arithmetic
expressions

2 large errors arise in small expressions in fairly obvious places (1/∆)

3 larger errors are generally a result of composition of many operations

Conclusion: If we write software as a composition of distinct small
functions and subroutines, the errors can be reasonably bounded at each
stage

Tom Clune (SSSO) TDD - TDD and Scientific/Technical Software - NCAR May 1, 2012 33 / 61

Numerical tolerance (cont’d)

Observations

1 machine epsilon is a good estimate for most short arithmetic
expressions

2 large errors arise in small expressions in fairly obvious places (1/∆)

3 larger errors are generally a result of composition of many operations

Conclusion: If we write software as a composition of distinct small
functions and subroutines, the errors can be reasonably bounded at each
stage

Tom Clune (SSSO) TDD - TDD and Scientific/Technical Software - NCAR May 1, 2012 33 / 61

Numerical tolerance (cont’d)

Observations

1 machine epsilon is a good estimate for most short arithmetic
expressions

2 large errors arise in small expressions in fairly obvious places (1/∆)

3 larger errors are generally a result of composition of many operations

Conclusion: If we write software as a composition of distinct small
functions and subroutines, the errors can be reasonably bounded at each
stage

Tom Clune (SSSO) TDD - TDD and Scientific/Technical Software - NCAR May 1, 2012 33 / 61

Numerical tolerance (cont’d)

Observations

1 machine epsilon is a good estimate for most short arithmetic
expressions

2 large errors arise in small expressions in fairly obvious places (1/∆)

3 larger errors are generally a result of composition of many operations

Conclusion: If we write software as a composition of distinct small
functions and subroutines, the errors can be reasonably bounded at each
stage

Tom Clune (SSSO) TDD - TDD and Scientific/Technical Software - NCAR May 1, 2012 33 / 61

Numerical tolerance (cont’d)

Observations

1 machine epsilon is a good estimate for most short arithmetic
expressions

2 large errors arise in small expressions in fairly obvious places (1/∆)

3 larger errors are generally a result of composition of many operations

Conclusion: If we write software as a composition of distinct small
functions and subroutines, the errors can be reasonably bounded at each
stage

Tom Clune (SSSO) TDD - TDD and Scientific/Technical Software - NCAR May 1, 2012 33 / 61

Numerical tolerance (cont’d)

Observations

1 machine epsilon is a good estimate for most short arithmetic
expressions

2 large errors arise in small expressions in fairly obvious places (1/∆)

3 larger errors are generally a result of composition of many operations

Conclusion: If we write software as a composition of distinct small
functions and subroutines, the errors can be reasonably bounded at each
stage

Tom Clune (SSSO) TDD - TDD and Scientific/Technical Software - NCAR May 1, 2012 33 / 61

TDD and long integration

TDD does not directly relate to issues of stability

If long integration gets incorrect results:

1 Software defect: missing test
2 Genuine science challenge

TDD can reduce the frequency at which long integrations are
needed/performed

Tom Clune (SSSO) TDD - TDD and Scientific/Technical Software - NCAR May 1, 2012 34 / 61

TDD and long integration

TDD does not directly relate to issues of stability

If long integration gets incorrect results:
1 Software defect: missing test

2 Genuine science challenge

TDD can reduce the frequency at which long integrations are
needed/performed

Tom Clune (SSSO) TDD - TDD and Scientific/Technical Software - NCAR May 1, 2012 34 / 61

TDD and long integration

TDD does not directly relate to issues of stability

If long integration gets incorrect results:
1 Software defect: missing test
2 Genuine science challenge

TDD can reduce the frequency at which long integrations are
needed/performed

Tom Clune (SSSO) TDD - TDD and Scientific/Technical Software - NCAR May 1, 2012 34 / 61

TDD and Lack of Analytic Results

Keep in mind: “How can you implement it if you cannot say what it
should do?”

Split into pieces - often each step has analytic solution

Choose input values that are convenient

Consider a trivial case:

c a l l a s s e r t E q u a l (3 . 1 4 1 5 9 2 6 5 , a r e a O f C i r c l e (1 .))
c a l l a s s e r t E q u a l (6 . 2 8 . . . , a r e a O f C i r c l e (2 .))

What if instead the areaOfCircle() function accepted 2 arguments: “π”
and r .

c a l l a s s e r t E q u a l (1 . , a r e a O f C i r c l e (1 . , 1 .))
c a l l a s s e r t E q u a l (4 . , a r e a O f C i r c l e (1 . , 2 .))
c a l l a s s e r t E q u a l (2 . , a r e a O f C i r c l e (2 . , 1 .))

Tom Clune (SSSO) TDD - TDD and Scientific/Technical Software - NCAR May 1, 2012 36 / 61

TDD and irreducible complexity

Are the tests as complex as the implementation?

Short answer: No

Long answer: Well, they shouldn’t be ...
I Unit tests use specific inputs - implementation handles generic case
I Each layer of algorithm is tested separately
I Layers of the production code are coupled - huge complexity
I Tests are decoupled - low complexity

Tom Clune (SSSO) TDD - TDD and Scientific/Technical Software - NCAR May 1, 2012 37 / 61

TDD and irreducible complexity

Are the tests as complex as the implementation?

Short answer: No

Long answer: Well, they shouldn’t be ...

I Unit tests use specific inputs - implementation handles generic case
I Each layer of algorithm is tested separately
I Layers of the production code are coupled - huge complexity
I Tests are decoupled - low complexity

Tom Clune (SSSO) TDD - TDD and Scientific/Technical Software - NCAR May 1, 2012 37 / 61

TDD and irreducible complexity

Are the tests as complex as the implementation?

Short answer: No

Long answer: Well, they shouldn’t be ...
I Unit tests use specific inputs - implementation handles generic case

I Each layer of algorithm is tested separately
I Layers of the production code are coupled - huge complexity
I Tests are decoupled - low complexity

Tom Clune (SSSO) TDD - TDD and Scientific/Technical Software - NCAR May 1, 2012 37 / 61

TDD and irreducible complexity

Are the tests as complex as the implementation?

Short answer: No

Long answer: Well, they shouldn’t be ...
I Unit tests use specific inputs - implementation handles generic case
I Each layer of algorithm is tested separately

I Layers of the production code are coupled - huge complexity
I Tests are decoupled - low complexity

Tom Clune (SSSO) TDD - TDD and Scientific/Technical Software - NCAR May 1, 2012 37 / 61

TDD and irreducible complexity

Are the tests as complex as the implementation?

Short answer: No

Long answer: Well, they shouldn’t be ...
I Unit tests use specific inputs - implementation handles generic case
I Each layer of algorithm is tested separately
I Layers of the production code are coupled - huge complexity

I Tests are decoupled - low complexity

Tom Clune (SSSO) TDD - TDD and Scientific/Technical Software - NCAR May 1, 2012 37 / 61

TDD and irreducible complexity

Are the tests as complex as the implementation?

Short answer: No

Long answer: Well, they shouldn’t be ...
I Unit tests use specific inputs - implementation handles generic case
I Each layer of algorithm is tested separately
I Layers of the production code are coupled - huge complexity
I Tests are decoupled - low complexity

Tom Clune (SSSO) TDD - TDD and Scientific/Technical Software - NCAR May 1, 2012 37 / 61

TDD and the Legacy Burden

TDD was created for developing new code, and does not directly
speak to maintaining legacy code.

Adding new functionality
I Avoid wedging new loging directly into existing large procedure
I Use TDD to develop separate facility for new computation
I Just call the new procedure from the large legacy procedure

Refactoring
I Use unit tests to constrain existing behavior
I Very difficult for large procedures
I Try to find small pieces to pull out into new procedures

Tom Clune (SSSO) TDD - TDD and Scientific/Technical Software - NCAR May 1, 2012 38 / 61

TDD Best Practices

Small steps - each iteration � 10 minutes

Small, readable tests

Extremely fast execution - 1 ms/test or less

Ruthless refactoring

Verify that each test initially fails

Tom Clune (SSSO) TDD - TDD and Scientific/Technical Software - NCAR May 1, 2012 39 / 61

TDD Best Practices

Small steps - each iteration � 10 minutes

Small, readable tests

Extremely fast execution - 1 ms/test or less

Ruthless refactoring

Verify that each test initially fails

Tom Clune (SSSO) TDD - TDD and Scientific/Technical Software - NCAR May 1, 2012 39 / 61

TDD Best Practices

Small steps - each iteration � 10 minutes

Small, readable tests

Extremely fast execution - 1 ms/test or less

Ruthless refactoring

Verify that each test initially fails

Tom Clune (SSSO) TDD - TDD and Scientific/Technical Software - NCAR May 1, 2012 39 / 61

TDD Best Practices

Small steps - each iteration � 10 minutes

Small, readable tests

Extremely fast execution - 1 ms/test or less

Ruthless refactoring

Verify that each test initially fails

Tom Clune (SSSO) TDD - TDD and Scientific/Technical Software - NCAR May 1, 2012 39 / 61

TDD Best Practices

Small steps - each iteration � 10 minutes

Small, readable tests

Extremely fast execution - 1 ms/test or less

Ruthless refactoring

Verify that each test initially fails

Tom Clune (SSSO) TDD - TDD and Scientific/Technical Software - NCAR May 1, 2012 39 / 61

TDD Best Practices

Small steps - each iteration � 10 minutes

Small, readable tests

Extremely fast execution - 1 ms/test or less

Ruthless refactoring

Verify that each test initially fails

Tom Clune (SSSO) TDD - TDD and Scientific/Technical Software - NCAR May 1, 2012 39 / 61

TDD and Performance

Optimized algorithms may require many steps within a single
procedure

TDD emphasizes small simple procedures

Such an approach may lead to slow execution

Solution: Bootstrapping
I Use initial solution as unit test for optimized solution
I Maintain both implementations

Tom Clune (SSSO) TDD - TDD and Scientific/Technical Software - NCAR May 1, 2012 40 / 61

Experience to date

TDD has been used heavily within several projects at NASA

Mostly for “infrastructure” portions - relatively little numerical alg.

pFUnit

DYNAMO - spectral MHD code on shperical shell

GTRAJ - offline trajectory integration (C++)

Snowfake - virtual snowfakes; Multi-lattice Snowfake

Observations:

∼ 1:1 ratio of test code to source code

Works very well for infrastructure

Learning curve
I 1-2 days for technique
I Weeks-months to wean old habits
I Full benefit may require some sophistication

Tom Clune (SSSO) TDD - TDD and Scientific/Technical Software - NCAR May 1, 2012 41 / 61

Outline

1 Introduction

2 Testing

3 Testing Frameworks

4 Test-Driven Development

5 TDD and Scientific/Technical Software

6 Example

7 pFUnit

Tom Clune (SSSO) TDD - Example - NCAR May 1, 2012 42 / 61

Linear Interpolation

�
�

�

6
y

-
xx1 x2 x3 xnx̂

t t
t t

t t
t

Tom Clune (SSSO) TDD - Example - NCAR May 1, 2012 43 / 61

Potential Tests

Bracketing: Find i such that xi <= x̂ < xi+1

Computing node weights:

wa =
xi+1 − x̂

xi+1 − xi
wb = 1− wa

Compute weighted sum: ŷ = waf (xi) + wbf (xi+1)

Tom Clune (SSSO) TDD - Example - NCAR May 1, 2012 44 / 61

Potential Tests

Bracketing: Find i such that xi <= x̂ < xi+1

Computing node weights:

wa =
xi+1 − x̂

xi+1 − xi
wb = 1− wa

Compute weighted sum: ŷ = waf (xi) + wbf (xi+1)

Tom Clune (SSSO) TDD - Example - NCAR May 1, 2012 44 / 61

Potential Tests

Bracketing: Find i such that xi <= x̂ < xi+1

Computing node weights:

wa =
xi+1 − x̂

xi+1 − xi
wb = 1− wa

Compute weighted sum: ŷ = waf (xi) + wbf (xi+1)

Tom Clune (SSSO) TDD - Example - NCAR May 1, 2012 44 / 61

Potential Tests

Bracketing: Find i such that xi <= x̂ < xi+1

Computing node weights:

wa =
xi+1 − x̂

xi+1 − xi
wb = 1− wa

Compute weighted sum: ŷ = waf (xi) + wbf (xi+1)

Tom Clune (SSSO) TDD - Example - NCAR May 1, 2012 44 / 61

Bracketing Tests

i n d e x = b r a c k e t (nodes , x)

Case Preconditions Postcondition
nodes x return

interior {x} = {1, 2, 3} x̂ = 1.5 i = 1
other interior {x} = {1, 2, 3} x̂ = 2.5 i = 2
at node {x} = {1, 2, 3} x̂ = 2.0 i = 2 (?)
at edge {x} = {1, 2, 3} x̂ = 1.0 i = 1 (?)
other edge {x} = {1, 2, 3} x̂ = 3.0 i = 2 (????)
out-of-bounds {x} = {1, 2, 3} x̂ = 1.5 out-of-bounds error
out-of-order {x} = {1, 2, 3} x̂ = 1.5 out-of-order error

Tom Clune (SSSO) TDD - Example - NCAR May 1, 2012 46 / 61

Bracketing Tests

i n d e x = b r a c k e t (nodes , x)

Case Preconditions Postcondition
nodes x return

interior {x} = {1, 2, 3} x̂ = 1.5 i = 1

other interior {x} = {1, 2, 3} x̂ = 2.5 i = 2
at node {x} = {1, 2, 3} x̂ = 2.0 i = 2 (?)
at edge {x} = {1, 2, 3} x̂ = 1.0 i = 1 (?)
other edge {x} = {1, 2, 3} x̂ = 3.0 i = 2 (????)
out-of-bounds {x} = {1, 2, 3} x̂ = 1.5 out-of-bounds error
out-of-order {x} = {1, 2, 3} x̂ = 1.5 out-of-order error

Tom Clune (SSSO) TDD - Example - NCAR May 1, 2012 46 / 61

Bracketing Tests

i n d e x = b r a c k e t (nodes , x)

Case Preconditions Postcondition
nodes x return

interior {x} = {1, 2, 3} x̂ = 1.5 i = 1
other interior {x} = {1, 2, 3} x̂ = 2.5 i = 2

at node {x} = {1, 2, 3} x̂ = 2.0 i = 2 (?)
at edge {x} = {1, 2, 3} x̂ = 1.0 i = 1 (?)
other edge {x} = {1, 2, 3} x̂ = 3.0 i = 2 (????)
out-of-bounds {x} = {1, 2, 3} x̂ = 1.5 out-of-bounds error
out-of-order {x} = {1, 2, 3} x̂ = 1.5 out-of-order error

Tom Clune (SSSO) TDD - Example - NCAR May 1, 2012 46 / 61

Bracketing Tests

i n d e x = b r a c k e t (nodes , x)

Case Preconditions Postcondition
nodes x return

interior {x} = {1, 2, 3} x̂ = 1.5 i = 1
other interior {x} = {1, 2, 3} x̂ = 2.5 i = 2
at node {x} = {1, 2, 3} x̂ = 2.0 i = 2 (?)

at edge {x} = {1, 2, 3} x̂ = 1.0 i = 1 (?)
other edge {x} = {1, 2, 3} x̂ = 3.0 i = 2 (????)
out-of-bounds {x} = {1, 2, 3} x̂ = 1.5 out-of-bounds error
out-of-order {x} = {1, 2, 3} x̂ = 1.5 out-of-order error

Tom Clune (SSSO) TDD - Example - NCAR May 1, 2012 46 / 61

Bracketing Tests

i n d e x = b r a c k e t (nodes , x)

Case Preconditions Postcondition
nodes x return

interior {x} = {1, 2, 3} x̂ = 1.5 i = 1
other interior {x} = {1, 2, 3} x̂ = 2.5 i = 2
at node {x} = {1, 2, 3} x̂ = 2.0 i = 2 (?)
at edge {x} = {1, 2, 3} x̂ = 1.0 i = 1 (?)

other edge {x} = {1, 2, 3} x̂ = 3.0 i = 2 (????)
out-of-bounds {x} = {1, 2, 3} x̂ = 1.5 out-of-bounds error
out-of-order {x} = {1, 2, 3} x̂ = 1.5 out-of-order error

Tom Clune (SSSO) TDD - Example - NCAR May 1, 2012 46 / 61

Bracketing Tests

i n d e x = b r a c k e t (nodes , x)

Case Preconditions Postcondition
nodes x return

interior {x} = {1, 2, 3} x̂ = 1.5 i = 1
other interior {x} = {1, 2, 3} x̂ = 2.5 i = 2
at node {x} = {1, 2, 3} x̂ = 2.0 i = 2 (?)
at edge {x} = {1, 2, 3} x̂ = 1.0 i = 1 (?)
other edge {x} = {1, 2, 3} x̂ = 3.0 i = 2 (????)

out-of-bounds {x} = {1, 2, 3} x̂ = 1.5 out-of-bounds error
out-of-order {x} = {1, 2, 3} x̂ = 1.5 out-of-order error

Tom Clune (SSSO) TDD - Example - NCAR May 1, 2012 46 / 61

Bracketing Tests

i n d e x = b r a c k e t (nodes , x)

Case Preconditions Postcondition
nodes x return

interior {x} = {1, 2, 3} x̂ = 1.5 i = 1
other interior {x} = {1, 2, 3} x̂ = 2.5 i = 2
at node {x} = {1, 2, 3} x̂ = 2.0 i = 2 (?)
at edge {x} = {1, 2, 3} x̂ = 1.0 i = 1 (?)
other edge {x} = {1, 2, 3} x̂ = 3.0 i = 2 (????)
out-of-bounds {x} = {1, 2, 3} x̂ = 1.5 out-of-bounds error

out-of-order {x} = {1, 2, 3} x̂ = 1.5 out-of-order error

Tom Clune (SSSO) TDD - Example - NCAR May 1, 2012 46 / 61

Bracketing Tests

i n d e x = b r a c k e t (nodes , x)

Case Preconditions Postcondition
nodes x return

interior {x} = {1, 2, 3} x̂ = 1.5 i = 1
other interior {x} = {1, 2, 3} x̂ = 2.5 i = 2
at node {x} = {1, 2, 3} x̂ = 2.0 i = 2 (?)
at edge {x} = {1, 2, 3} x̂ = 1.0 i = 1 (?)
other edge {x} = {1, 2, 3} x̂ = 3.0 i = 2 (????)
out-of-bounds {x} = {1, 2, 3} x̂ = 1.5 out-of-bounds error
out-of-order {x} = {1, 2, 3} x̂ = 1.5 out-of-order error

Tom Clune (SSSO) TDD - Example - NCAR May 1, 2012 46 / 61

Example: Bracketing Test 1

Preconditions: {x} = {1, 2, 3}, x̂ = 1.5

Postcondition: return 1

s u b r o u t i n e t e s t B r a c k e t 1 ()
nodes = [1 . , 2 . , 3 .]
i n d e x = g e t B r a c k e t (nodes , 1 . 5)
c a l l a s s e r t E q u a l (1 , i n d e x)

end s u b r o u t i n e

s u b r o u t i n e t e s t B r a c k e t 1 ()
c a l l a s s e r t E q u a l (1 , g e t B r a c k e t ([1 . , 2 . , 3 .] , 1 . 5))

end s u b r o u t i n e

f u n c t i o n g e t B r a c k e t (nodes , x) r e s u l t (i n d e x)
i n d e x = 1

end f u n c t i o n

Tom Clune (SSSO) TDD - Example - NCAR May 1, 2012 48 / 61

Example: Bracketing Test 1

Preconditions: {x} = {1, 2, 3}, x̂ = 1.5

Postcondition: return 1

s u b r o u t i n e t e s t B r a c k e t 1 ()
nodes = [1 . , 2 . , 3 .]
i n d e x = g e t B r a c k e t (nodes , 1 . 5)
c a l l a s s e r t E q u a l (1 , i n d e x)

end s u b r o u t i n e

s u b r o u t i n e t e s t B r a c k e t 1 ()
c a l l a s s e r t E q u a l (1 , g e t B r a c k e t ([1 . , 2 . , 3 .] , 1 . 5))

end s u b r o u t i n e

f u n c t i o n g e t B r a c k e t (nodes , x) r e s u l t (i n d e x)
i n d e x = 1

end f u n c t i o n

Tom Clune (SSSO) TDD - Example - NCAR May 1, 2012 48 / 61

Example: Bracketing Test 1

Preconditions: {x} = {1, 2, 3}, x̂ = 1.5

Postcondition: return 1

s u b r o u t i n e t e s t B r a c k e t 1 ()
nodes = [1 . , 2 . , 3 .]
i n d e x = g e t B r a c k e t (nodes , 1 . 5)
c a l l a s s e r t E q u a l (1 , i n d e x)

end s u b r o u t i n e

s u b r o u t i n e t e s t B r a c k e t 1 ()
c a l l a s s e r t E q u a l (1 , g e t B r a c k e t ([1 . , 2 . , 3 .] , 1 . 5))

end s u b r o u t i n e

f u n c t i o n g e t B r a c k e t (nodes , x) r e s u l t (i n d e x)
i n d e x = 1

end f u n c t i o n

Tom Clune (SSSO) TDD - Example - NCAR May 1, 2012 48 / 61

Example: Bracketing Test 1

Preconditions: {x} = {1, 2, 3}, x̂ = 1.5

Postcondition: return 1

s u b r o u t i n e t e s t B r a c k e t 1 ()
nodes = [1 . , 2 . , 3 .]
i n d e x = g e t B r a c k e t (nodes , 1 . 5)
c a l l a s s e r t E q u a l (1 , i n d e x)

end s u b r o u t i n e

s u b r o u t i n e t e s t B r a c k e t 1 ()
c a l l a s s e r t E q u a l (1 , g e t B r a c k e t ([1 . , 2 . , 3 .] , 1 . 5))

end s u b r o u t i n e

f u n c t i o n g e t B r a c k e t (nodes , x) r e s u l t (i n d e x)
i n d e x = 1

end f u n c t i o n

Tom Clune (SSSO) TDD - Example - NCAR May 1, 2012 48 / 61

Example: Bracketing Test 2

Preconditions: {x} = {1, 2, 3}, x̂ = 2.5

Postcondition: return 2

s u b r o u t i n e t e s t B r a c k e t 2 ()
nodes = [1 . , 2 . , 3 .]
i n d e x = g e t B r a c k e t (nodes , 2 . 5)
c a l l a s s e r t E q u a l (2 , i n d e x)

end s u b r o u t i n e

f u n c t i o n g e t B r a c k e t (nodes , x) r e s u l t (i n d e x)
i f (x > nodes (2)) then

i n d e x = 2
e l s e

i n d e x = 1
end i f

end f u n c t i o n

Generalize ...

f u n c t i o n g e t B r a c k e t (nodes , x) r e s u l t (i n d e x)

do i = 1 , s i z e (nodes) 1
i f (nodes (i +1) > x) i n d e x = i

end do

end f u n c t i o n

Tom Clune (SSSO) TDD - Example - NCAR May 1, 2012 50 / 61

Example: Bracketing Test 2

Preconditions: {x} = {1, 2, 3}, x̂ = 2.5

Postcondition: return 2

s u b r o u t i n e t e s t B r a c k e t 2 ()
nodes = [1 . , 2 . , 3 .]
i n d e x = g e t B r a c k e t (nodes , 2 . 5)
c a l l a s s e r t E q u a l (2 , i n d e x)

end s u b r o u t i n e

f u n c t i o n g e t B r a c k e t (nodes , x) r e s u l t (i n d e x)
i f (x > nodes (2)) then

i n d e x = 2
e l s e

i n d e x = 1
end i f

end f u n c t i o n

Generalize ...

f u n c t i o n g e t B r a c k e t (nodes , x) r e s u l t (i n d e x)

do i = 1 , s i z e (nodes) 1
i f (nodes (i +1) > x) i n d e x = i

end do

end f u n c t i o n

Tom Clune (SSSO) TDD - Example - NCAR May 1, 2012 50 / 61

Example: Bracketing Test 2

Preconditions: {x} = {1, 2, 3}, x̂ = 2.5

Postcondition: return 2

s u b r o u t i n e t e s t B r a c k e t 2 ()
nodes = [1 . , 2 . , 3 .]
i n d e x = g e t B r a c k e t (nodes , 2 . 5)
c a l l a s s e r t E q u a l (2 , i n d e x)

end s u b r o u t i n e

f u n c t i o n g e t B r a c k e t (nodes , x) r e s u l t (i n d e x)
i f (x > nodes (2)) then

i n d e x = 2
e l s e

i n d e x = 1
end i f

end f u n c t i o n

Generalize ...

f u n c t i o n g e t B r a c k e t (nodes , x) r e s u l t (i n d e x)

do i = 1 , s i z e (nodes) 1
i f (nodes (i +1) > x) i n d e x = i

end do

end f u n c t i o n

Tom Clune (SSSO) TDD - Example - NCAR May 1, 2012 50 / 61

Example: Bracketing Test 2

Preconditions: {x} = {1, 2, 3}, x̂ = 2.5

Postcondition: return 2

s u b r o u t i n e t e s t B r a c k e t 2 ()
nodes = [1 . , 2 . , 3 .]
i n d e x = g e t B r a c k e t (nodes , 2 . 5)
c a l l a s s e r t E q u a l (2 , i n d e x)

end s u b r o u t i n e

f u n c t i o n g e t B r a c k e t (nodes , x) r e s u l t (i n d e x)
i f (x > nodes (2)) then

i n d e x = 2
e l s e

i n d e x = 1
end i f

end f u n c t i o n

Generalize ...

f u n c t i o n g e t B r a c k e t (nodes , x) r e s u l t (i n d e x)

do i = 1 , s i z e (nodes) 1
i f (nodes (i +1) > x) i n d e x = i

end do

end f u n c t i o n

Tom Clune (SSSO) TDD - Example - NCAR May 1, 2012 50 / 61

Tests for Computing Weights

i n d e x = b r a c k e t (nodes , x)

Case Preconditions Postcondition
interval x weights

lower bound [1., 2.] x̂ = 1.0 w = [1.0, 0.0]
upper bound [1., 2.] x̂ = 1.0 w = [0.0, 1.0]
interior [1., 2.] x̂ = 1.5 w = [0.5, 0.5]
big interval slope [1., 3.] x̂ = 1.5 w = [0.75, 0.25]
degenerate [1., 1.] x̂ = 1.0 degenerate error
out-of-bounds [1., 2.] x̂ = 0.5 out-of-bounds error

Tom Clune (SSSO) TDD - Example - NCAR May 1, 2012 52 / 61

Tests for Computing Weights

i n d e x = b r a c k e t (nodes , x)

Case Preconditions Postcondition
interval x weights

lower bound [1., 2.] x̂ = 1.0 w = [1.0, 0.0]

upper bound [1., 2.] x̂ = 1.0 w = [0.0, 1.0]
interior [1., 2.] x̂ = 1.5 w = [0.5, 0.5]
big interval slope [1., 3.] x̂ = 1.5 w = [0.75, 0.25]
degenerate [1., 1.] x̂ = 1.0 degenerate error
out-of-bounds [1., 2.] x̂ = 0.5 out-of-bounds error

Tom Clune (SSSO) TDD - Example - NCAR May 1, 2012 52 / 61

Tests for Computing Weights

i n d e x = b r a c k e t (nodes , x)

Case Preconditions Postcondition
interval x weights

lower bound [1., 2.] x̂ = 1.0 w = [1.0, 0.0]
upper bound [1., 2.] x̂ = 1.0 w = [0.0, 1.0]

interior [1., 2.] x̂ = 1.5 w = [0.5, 0.5]
big interval slope [1., 3.] x̂ = 1.5 w = [0.75, 0.25]
degenerate [1., 1.] x̂ = 1.0 degenerate error
out-of-bounds [1., 2.] x̂ = 0.5 out-of-bounds error

Tom Clune (SSSO) TDD - Example - NCAR May 1, 2012 52 / 61

Tests for Computing Weights

i n d e x = b r a c k e t (nodes , x)

Case Preconditions Postcondition
interval x weights

lower bound [1., 2.] x̂ = 1.0 w = [1.0, 0.0]
upper bound [1., 2.] x̂ = 1.0 w = [0.0, 1.0]
interior [1., 2.] x̂ = 1.5 w = [0.5, 0.5]

big interval slope [1., 3.] x̂ = 1.5 w = [0.75, 0.25]
degenerate [1., 1.] x̂ = 1.0 degenerate error
out-of-bounds [1., 2.] x̂ = 0.5 out-of-bounds error

Tom Clune (SSSO) TDD - Example - NCAR May 1, 2012 52 / 61

Tests for Computing Weights

i n d e x = b r a c k e t (nodes , x)

Case Preconditions Postcondition
interval x weights

lower bound [1., 2.] x̂ = 1.0 w = [1.0, 0.0]
upper bound [1., 2.] x̂ = 1.0 w = [0.0, 1.0]
interior [1., 2.] x̂ = 1.5 w = [0.5, 0.5]
big interval slope [1., 3.] x̂ = 1.5 w = [0.75, 0.25]

degenerate [1., 1.] x̂ = 1.0 degenerate error
out-of-bounds [1., 2.] x̂ = 0.5 out-of-bounds error

Tom Clune (SSSO) TDD - Example - NCAR May 1, 2012 52 / 61

Tests for Computing Weights

i n d e x = b r a c k e t (nodes , x)

Case Preconditions Postcondition
interval x weights

lower bound [1., 2.] x̂ = 1.0 w = [1.0, 0.0]
upper bound [1., 2.] x̂ = 1.0 w = [0.0, 1.0]
interior [1., 2.] x̂ = 1.5 w = [0.5, 0.5]
big interval slope [1., 3.] x̂ = 1.5 w = [0.75, 0.25]
degenerate [1., 1.] x̂ = 1.0 degenerate error

out-of-bounds [1., 2.] x̂ = 0.5 out-of-bounds error

Tom Clune (SSSO) TDD - Example - NCAR May 1, 2012 52 / 61

Tests for Computing Weights

i n d e x = b r a c k e t (nodes , x)

Case Preconditions Postcondition
interval x weights

lower bound [1., 2.] x̂ = 1.0 w = [1.0, 0.0]
upper bound [1., 2.] x̂ = 1.0 w = [0.0, 1.0]
interior [1., 2.] x̂ = 1.5 w = [0.5, 0.5]
big interval slope [1., 3.] x̂ = 1.5 w = [0.75, 0.25]
degenerate [1., 1.] x̂ = 1.0 degenerate error
out-of-bounds [1., 2.] x̂ = 0.5 out-of-bounds error

Tom Clune (SSSO) TDD - Example - NCAR May 1, 2012 52 / 61

Example: Weights Test 1

Precondition: [a, b] = [1., 2.], x̂ = 1.0

Postcondition: w = {1.0, 0.0}

s u b r o u t i n e t e s t W e i g h t 1 ()
r e a l : : i n t e r v a l (2) , w e i g h t s (2)
r e a l : : x
i n t e r v a l = [1 . , 2 .]
w e i g h t s = computeWeights (i n t e r v a l , 1 . 0)
c a l l a s s e r t E q u a l ([1 . 0 , 0 . 0] , w e i g h t s)

end s u b r o u t i n e t e s t W e i g h t 1

r e a l f u n c t i o n computeWeights (i n t e r v a l , x) r e s u l t (w e i g h t s)
r e a l , i n t e n t (i n) : : i n t e r v a l (2)
r e a l , i n t e n t (i n) : : x
w e i g h t s = [1 . 0 , 0 . 0]

end f u n c t i o n

Tom Clune (SSSO) TDD - Example - NCAR May 1, 2012 54 / 61

Example: Tying it together

Precondition:
I {(x , y)i} = {(1, 1), (2, 1), (4, 1)}
I x̂ = 3

Postcondition: ŷ = 1.

s u b r o u t i n e t e s t I n t e r p o l a t e C o n s t a n t Y ()
r e a l : : nodes (2 , 3)
nodes = r e s h a p e ([[1 , 1] , [2 , 1] , [4 , 1]] , shape = [2 , 3])
c a l l a s s e r t E q u a l (1 . 0 , i n t e r p o l a t e (nodes , 3 . 0))

end s u b r o u t i n e t e s t I n t e r p o l a t e 1

f u n c t i o n i n t e r p o l a t e (nodes , x)
r e a l , i n t e n t (i n) : : nodes (: , :)
y = 1

end f u n c t i o n i n t e r p o l a t e

Tom Clune (SSSO) TDD - Example - NCAR May 1, 2012 56 / 61

Example: Tying it together

Precondition:
I {(x , y)i} = {(1, 1), (2, 3), (4, 1)}
I x̂ = 3

Postcondition: ŷ = 2.

s u b r o u t i n e t e s t I n t e r p o l a t e 1 ()
r e a l : : nodes (2 , 3)
nodes = r e s h a p e ([[1 , 1] , [2 , 3] , [4 , 1]] , shape = [2 , 3])
c a l l a s s e r t E q u a l (1 . 0 , i n t e r p o l a t e (nodes , 3 . 0))

end s u b r o u t i n e t e s t I n t e r p o l a t e 1

f u n c t i o n i n t e r p o l a t e (nodes , x) r e s u l t (y)
i n t e g e r : : i
r e a l : : w e i g h t s (2) , xAtEndPoints (2) , y A t E n d p o i n t s (2)

i = g e t B r a c k e t (nodes (1 , :) , x)

xAtEndPoints = nodes (1 , i) ! used d e r i v e d type ?
y A t E n d p o i n t s = nodes (2 , i)
w e i g h t s = computeWeights (nodes (1 , [i , i +1]) , x)

y = sum (w e i g h t s ∗ y A t E n d p o i n t s)
end f u n c t i o n i n t e r p o l a t e

Tom Clune (SSSO) TDD - Example - NCAR May 1, 2012 58 / 61

Outline

1 Introduction

2 Testing

3 Testing Frameworks

4 Test-Driven Development

5 TDD and Scientific/Technical Software

6 Example

7 pFUnit

Tom Clune (SSSO) TDD - pFUnit - NCAR May 1, 2012 59 / 61

pFUnit - Fortran Unit testing framework

Tests written in Fortran

Supports testing of parallel (MPI) algorithms

Support for multi-dimensional array assertions

Written in standard F95 (plus a tiny bit of F2003)

Developed using TDD

Tutorial in the afternoon sessioon

Tom Clune (SSSO) TDD - pFUnit - NCAR May 1, 2012 60 / 61

References

pFUnit: http://sourceforge.net/projects/pfunit/

Tutorial materials
I https://modelingguru.nasa.gov/docs/DOC-1982
I https://modelingguru.nasa.gov/docs/DOC-1983
I https://modelingguru.nasa.gov/docs/DOC-1984

TDD Blog
https://modelingguru.nasa.gov/blogs/modelingwithtdd

Test-Driven Development: By Example - Kent Beck

Mller and Padberg,”About the Return on Investment of Test-Driven
Development,” http://www.ipd.uka.de/mitarbeiter/muellerm/

publications/edser03.pdf

Refactoring: Improving the Design of Existing Code - Martin Fowler

JUnit http://junit.sourceforge.net/

These slides https://modelingguru.nasa.gov/docs/DOC-2222

Tom Clune (SSSO) TDD - pFUnit - NCAR May 1, 2012 61 / 61

http://sourceforge.net/projects/pfunit/
https://modelingguru.nasa.gov/docs/DOC-1982
https://modelingguru.nasa.gov/docs/DOC-1983
https://modelingguru.nasa.gov/docs/DOC-1984
https://modelingguru.nasa.gov/blogs/modelingwithtdd
http://www.ipd.uka.de/mitarbeiter/muellerm/publications/edser03.pdf
http://www.ipd.uka.de/mitarbeiter/muellerm/publications/edser03.pdf
http://junit.sourceforge.net/
https://modelingguru.nasa.gov/docs/DOC-2222

	Introduction
	Testing
	Testing Frameworks
	Test-Driven Development
	TDD and Scientific/Technical Software

