THE COMPOSITION OF COMET C/2009 P1 (GARRADD) FROM INFRARED SPECTROSCOPY: EVIDENCE FOR AN OXYGEN-RICH HERITAGE? M. A. DiSanti¹, B. P. Bonev^{1,2}, G. L. Villanueva^{1,2}, L. Paganini^{1,3}, M. J. Mumma¹, S. B. Charnley¹, J. V. Keane⁴, and K. J. Meech⁴, G. A. Blake⁵, H. Böhnhardt⁶, M. Lippi⁶, ¹Goddard Center for Astrobiology, NASA-GSFC, Greenbelt, MD, USA (michael.a.disanti@nasa.gov), ²Catholic University of America, Washington, DC, USA, ³NASA Postdoctoral Program Fellow, ⁴Institute for Astronomy/UH NASA Astrobiology Institute, Honolulu, HI 96822, USA, ⁵Division of Geological and Planetary Sciences, Caltech, Pasadena, CA, USA, ⁶Max Planck Inst. for Solar System Research, Katlenburg-Lindau, Germany.

Introduction: Comets retain relatively primitive icy material remaining from the epoch of Solar System formation, however the extent to which their ices are modified remains a key question in cometary science. One way to address this is to measure the relative abundances of primary (parent) volatiles in comets (i.e., those ices native to the nucleus).

High-resolution $(\lambda/\Delta\lambda > 10^4)$ infrared spectroscopy is a powerful tool for measuring parent volatiles in comets through their vibrational emissions in the ~ 3–5 µm region. With modern instrumentation on worldclass telescopes, we can quantify a multitude of species (e.g., H₂O, C₂H₂, CH₄, C₂H₆, CO, H₂CO, CH₃OH, HCN, NH₃), even in comets with modest gas production. In space environments, compounds of keen interest to astrobiology could originate from HCN and NH₃ (leading to amino acids), H₂CO (leading to sugars), or C₂H₆ and CH₄ (suggested precursors of ethyl- and methylamine). Measuring the abundances of these precursor molecules and their variability among comets contributes to understanding the synthesis of the more complex prebiotic compounds.

Observations: Results will be presented from preperihelion spectra of C/2009 P1 (Garradd), a moderately bright comet from the Oort cloud, using three world-class facilities (with UT 2011 dates and R_h): Kcck/NIRSPEC(Sep 09, 2.1AU[1]; Oct 13, 1.8AU[2]), VLT/CRIRES (Aug 07, 2.4AU; Sep 17-21, 2.0AU[3]), and NASA-IRTF/CSHELL (Sep 08, 2.1AU [1]). Compared with the majority of Oort cloud comets, our observations of C/2009 P1 reveal enriched CO, severely depleted C_2H_2 , normal C_2H_6 , and normal to somewhat enriched CH₃OH.

Implications for Surface Chemistry: The importance of H-atom addition to C_2H_2 on the surfaces of interstellar grains to produce C_2H_4 and then C_2H_6 was validated astronomically by the discovery of abundant ethane in comet C/1996 B2 (Hyakutake), with C_2H_6/CH_4 well above that achievable by gas-phase chemistry [4], and subsequently in irradiation experiments on laboratory ice samples in the range ~ 10 - 50 K [5]. The large abundance ratios C_2H_6/CH_4 observed universally in comets since Hyakutake establish Hatom addition as an important and likely ubiquitous process. Comparing C_2H_6/C_2H_2 among comets can provide information on the efficiency of this process, and the infrared spectral region is uniquely capable in this regard since symmetric hydrocarbons (e.g., C_2H_2 , CH_4 , C_2H_6) have no electric dipole moment and so have no allowed pure rotational transitions.

CO is also hydrogenated on grain surfaces. Laboratory irradiation experiments on interstellar ice analogs have shown this to require very low temperatures, the resulting yields of H_2CO and CH_3OH being highly dependent both on hydrogen density (i.e., fluence) and on temperature in the range $\sim 10 - 25$ K [6]. The relative abundances of these chemically-related molecules in comets provide one measure of the efficiency of H-atom addition to CO on pre-cometary grains.

Oxidation of CO is also important on grain mantles, as evidenced by the widespread presence of CO2 ice towards interstellar sources observed with ISO [7] and also in a survey of seventeen comets observed with AKARI [8]. H-atom addition to C₂H₂ produces the vinyl radical (CH₂CH), which through subsequent oxidation/reduction reactions can lead to the three C₂H₄O isomers: ethylene oxide (c-C₂H₄O), vinyl alcohol (CH₂CHOH), and acetaldehyde (CH₃CHO) [9, 10]. This may have implications for interpreting observed abundance ratios for parent volatiles initially condensed onto grains (in particular CO/C₂H₂). For example, the depleted C₂H₂ we measure in C/2009 P1 may result from its conversion not only to ethane but also to these C₂H₄O isomers and (possibly) also to ethanol (CH₃CH₂OH).

References: [1] Villanueva et al. 2012, *Icarus, submitted.* [2] DiSanti et al. 2012, *in prep.* [3] Paganini et al. 2012, *ApJ Lett., 748,* L1. [4] Mumma et al. 1996 *Science, 272,* 1310. [5] Hiraoka et al. 2000 *ApJ, 532,* 1029. [6] Watanabe et al. 2004 *ApJ, 616,* 638. [7] Ehrenfreund et al. 1997 *Icarus, 130,* 1. [8] Ootsubo et al. 2011, *EPSC-DPS Joint Meeting, 6,* 369. [9] Charnley 2004 *Adv Sp Res, 33,* 23. [10] Hiraoka et al. 2000 *ApJ, 532,* 1029.

Acknowledgements: We gratefully acknowledge support from the NASA Astrobiology Institute, the NASA Planetary Astronomy and Atmospheres Programs, the National Science Foundation, and the NASA Postdoctoral Program.