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Introduction 
 
Dirac, in 1928, combining the ideas of quantum mechanics and the ideas of 
relativity invented the well-known relativistic wave equation. In his 
formulation, he predicted an antiparticle of the electron of spin ħ/2. He 
thought that this particle must be a proton. Dirac [1] published his 
interpretation in a paper ‘A theory of electrons and protons.’ It was shown 
later by the mathematician Hermann Weyl [see Ref. 2] that the Dirac theory 
was completely symmetric between negative and positive particles and the 
positive particle must have the same mass as that of the electron. In his J. 
Robert Oppenheimer Memorial Prize Acceptance Speech, Dirac [2] notes 
that ‘Blackett was really the first person to obtain hard evidence for the 
existence of a positron but he was afraid to publish it. He wanted 
confirmation, he was really over cautious.’ Positron, produced by the 
collision of cosmic rays in a cloud chamber, was detected experimentally by 
Anderson [3] in 1932. His paper was published in Physical Review in 1933. 
The concept of the positron and its detection were the important discoveries 
of the 20th century.    

 
Why positron physics is interesting. 
 
It is a particle, just like an electron. It has a positive charge while the 
electron has a negative charge. For this reason positron can form a 
positronium atom and positron annihilation with an electron can take place. 
This replaces in the calculations exchange in the case of two electrons and 
there are no nonlocal exchange terms in the equations for the scattering of 
positrons from atoms. This can be a tool for understanding of practical 
systems: 
 

1. Angular-correlation experiments to probe the Fermi surfaces of solids. 
2. PET scans of the human brain. This is now commonly used these 

days. 
3. Observation of annihilation of 511 keV line from the center of the 

galaxy (Bussard et al. [4]). 



Calculations and Results for Various Processes 
   
The simplest system to work on is the positron-hydrogen scattering. Such a 
system could have bound states and resonances just as in the case of 
electrons. Also, there is no need to invoke the Pauli principle because these 
are distinct particles. The positron is an antiparticle of the electron.  But we 
find that the absence of exchange does not make matters simple. During 
their encounter, the two particles could be in a virtual positronium state or 
could annihilate giving a 511 keV line.  
 
The low-energy non-relativistic Hamiltonian is of the same form as in the 
electron-hydrogen case, except for two changes of signs. This ‘minor’ 
difference has several implications. 
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We are using Rydberg units. In the above potential V, 1r  is the coordinate of 
the incident positron and 2r  is the electron coordinate. These distances are 
measured from the position of the nucleus of charge Z, assumed fixed. The 
positron feels a repulsive potential as it penetrates the atom while the 
electron always feels an attraction.  
 
Our aim is to calculate phase shifts for the scattering of a positron at low 
energies from the hydrogen atom. Knowing the phase shifts, we can 
calculate the cross section σ  for the scattering: 
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where 2k is the energy of the incident positron and l is the partial wave. 
 
We write the wave function in the static approximation as given below: 
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where u is the scattering function and φ  is the target function which is given 
by  
 

)exp()(
3

ZrZr −=
π

φ   and u(r) = (u(r)/r) Yl0(Ω)                                          (6) 

                                                                        
In this approximation the resulting potential is repulsive. The simplest 
approximation given above in Eq. (5) for the elastic scattering is called the 
static approximation.  Notice, in this case there is no exchange as for two 
electrons. 
 
For Z=1 and l=0, and for the incident positron momentum k we get the 
scattering equation for u(r1) given below 
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Solution of this equation gives phase shifts which are negative. The 
scattering function is given by 
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For large values of r1, the amplitude A can be taken independent of the 
distance 
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where δ is the phase shift. It is easy to calculate the phase shift in this case.  
From these two equations, we get  
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and,  
 

1
1 ]/[tan kruu −′= −δ .                                                                                      (11) 



 
This method can be easily generalized to the higher values of the angular 
momentum but then one has to use Bessel functions of order l. 
 
There are other methods which have been discussed by F. Calogero in his 
book ‘Variable Phase Approach in Potential Scattering.’  
 
It is well known that there is a polarization potential 4

1rα  which is 

attractive both for electrons and positrons, where α is the polarizability and it 
is 4.5a0

3 for the hydrogen atom. Adding this potential to the equation (7), we 
find that the two potentials tend to cancel each other in the case of the 
positrons. This gives some improved results but they are still not very 
satisfactory. 
 
The first good calculation was carried out by Schwartz [5]. 
 
If we picture an electron incident on the hydrogen atom we find that the two 
electrons tend to stay on either side of the nucleus because of the repulsion 
between them. But in the case of positron scattering on the hydrogen atom, 
the positron and electron tend to arrange themselves on the same side of the 
nucleus, with the result that the correlations between them become very 
important. These correlations can be represented by the coordinate 12r . 
Moreover, there is always the possibility of virtual positronium formation 
which has the wave function depending on this coordinate. Schwartz [5] 
used the Kohn variational principle with a correlated wave function of 
Hylleraas type, but without this coordinate in the exponential part of the 
wave function:  
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The summation is over integers l, m, and n and δ and γ are the nonlinear 
parameters, which can be varied to get the best results. 
 
Schwartz [5] calculated S-wave phase shifts for +e -H elastic scattering. But 
his calculation suffered from singularities. In spite of this, he could obtain 
fairly accurate results. 
 



His results have no bound principle for k > 0. That is, only the scattering 
length has a bound principle. This can be shown by the Kohn variational 
principle. 
A much better calculation has been carried out by Bhatia et al. [6] which did 
not suffer from the above-mentioned singularities. They calculated phase 
shifts below the positronium pickup threshold in +e -H elastic scattering. 
 
They used a generalized Hylleraas-type wave function, that is, they also had 

12r  in the exponential part of the wave function, and they used the projection 
operator formalism of Feshbach [7]. The closed channel wave function is 
given by 
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where, the additional nonlinear parameter is α.  The total wave function is 
given by 
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They constructed the optical potential using the projection operators P and 
Q. The projection operator P projects onto the ground state, while Q=1-P 
projects out of this state. Also, these operators have properties 
 
P2=P and Q2=Q      Idempotent,                                                                  (15) 
 
PQ=0                     Orthogonal                                                                    (16) 
 
P+Q=1                   Completeness                                                               (17) 
 
Now the differential equation for the scattering function is given by 
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where DEλ =E-ελ , ελ  are the eigenvalues of the QHQ problem and E=-1+k2. 
The last term in the above equation is called the optical potential.  
 
We will not go into details here except to mention that the optical potential 
can be shown to be negative definite, which means that it is always 



attractive. Furthermore, the calculated phase shifts can be shown to have a 
rigorous lower bound to the exact phase shifts. That is the calculated phase 
shifts are approaching the exact phase shifts from below and the exact phase 
shifts can be higher than the calculated phase shifts. Therefore, their results 
satisfy a rigorous bound principle. Bhatia et al. [6] solved Eq. (18) for 
various combinations of the nonlinear parameters with increasing number of 
terms in the generalized Hylleraas wave function.  We show in Table I for 
k=0.1, 0.6 and 0.7 how the phase shifts increase as the number of terms is 
increased in the optical potential. As the number of terms is increased, the 
optical potential becomes more negative. This table also shows that for N=0,  
just the static approximation given in  Eq. (7), gives negative phase shifts, as 
stated earlier. Also, it is clear that the phase shifts have a lower bound and 
they will increase further if the number of terms N in the closed channel 
wave function, Eq. (13), is increased.  
 
 

Table I.  Phase shifts with respect to the number of terms  
k\N      0       4       10       20     35      56      84 
   0.1 -0.0580 0.12416 0.14158 0.14553 0.14756 0.14777 0.14788 
   0.6 -0.3042  -0.0262 -0.0025 -0.0001 0.00226  0.00281 0.00301 
   0.7 -0.3400 -0.0796 -0.0059 -0.0563 -0.0534 -0.0526 -0.0524 

 
The scattering length is defined as  
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This equation shows that when the phase shifts have lower bounds, the 
scattering length a has an upper bound. To prove these rigorous bounds, we 
need to study the Kohn variational principle. 
 
To illustrate the calculation of the scattering length, let us write the 
scattering equation in a simple form for large values of r such that all the 
short-range potentials do not contribute in the scattering equation 
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Therefore, 
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Knowing u(r) beyond the range of the short-range potentials and then 
equating the various powers of r, we get  
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For any value u(r) at large r, we can determine the scattering length a. By 
having more coefficients for u(r) in Eq. (20), we can improve the accuracy 
of the functions u to determine the scattering length. 
 
 Results obtained by Bhatia et al. [6] for 84 terms in the Hylleraas wave 
function, along with the results of Schwartz [5] are shown in Table II. 
 
 

Table II. S-wave +e -H phase shifts. 
k     Bhatia et al. [6]    Schwartz [5] Houston and 

Drachman [11] 
0.1 0.1483 0.151 0.149 

           0.2 0.1877 0.188 0.189 
0.3 0.1677  0.168 0.169 
0.4 0.1201 0.120 0.123 
0.5          0.0624 0.062 0.065 
0.6 0.0039 0.007 0.008 
0.7 -0.0512 -0.054 -0.049 

 
 
 

We see that the results obtained by Schwartz [5] are quite good but they 
differ from the results of Bhatia et al. [6] at k=0.1, 0.6 and 0.7. 

 
Up to now these results have stood the test of time and have provided a 
benchmark for future calculations.  
 
A similar calculation for P-wave has been carried out for +e -H elastic 
scattering by Bhatia et al. [8]. This calculation is more complicated than the 



S-wave calculation. We will not go into details here but simply give their 
results in Table II, along with another calculation by Armstead [9]. The 
results of Bhatia et al. [8] are very accurate and we see the agreement with 
the results of Armstead [9] is very good. 
 
 

Table III. P-wave +e -H phase shifts. 
                 k       Bhatia  et al. [8]                  Armstead [9]  
               0.1              0.0094          0.009 
               0.2              0.0338          0.033 
               0.3              0.0665          0.064 
               0.4              0.1016          0.102 
               0.5              0.1309          0.132 
               0.6              0.1547          0.156 
               0.7              0.1799          0.178 
 
 
In the above calculations, phase shifts are calculated using the expression 
 
Lim u(r)=sin(kr1-lπ/2+δ)             r1 tending to infinity                               (23) 
 
Where l is the partial wave and δ is the phase shift. For S-waves l=0 and for 
P-waves l=1. 
 
For higher partial waves, the Born approximation can be used. Wadehra [10] 
has given the expression  
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where α2 is the quadrupole polarizability of the hydrogen atom and its value 
is 15.0a0

5.  We give phase shifts in Table IV, calculated from the above 
expression for l=2 to 7 for k=0.1, 0.2 and 0.3, as an illustration. These results 
are independent of charge of the incident particle. Therefore, they are the 
same for electrons and positrons. The phase shifts decrease as the angular 
momentum increases. 
 
 
 



 
 
 
Table IV. Positron-hydrogen atom scattering phase shifts for higher partial 
waves.  
            l         K=0.1          k=0.2           k=0.3 
            2       0.00135        0.005625         0.013329 
            3       0.00045        0.001817         0.004149 
            4       0.000204        0.000821         0.001861 
            5       0.00011        0.000441         0.000997 
            6       0.000066        0.000264         0.000597 
            7       0.000043        0.000171          0.000385 
  
 
I will discuss a simple method which gave fairly accurate results. This is 
called the Harris method. The calculations were carried out by Houston and 
Drachman [11]. In this method, the total wave function is written as  
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The last term is finite for r1 tending to zero for any small value of ε. They 
calculate eigenvalues of the Hamiltonian, using the correlation wave 
function Φ. Let us call them λβ where β=1, 2 ,.. N for N terms in the closed 
channel function Φ. Projection of Φβ onto the function ψT is given by 
 

,0|| >=Ψ−Φ< TEHβ                                                                                   (26) 
 
If E=-1+k2 is chosen as E=λβ, then it follows that  
 

>Ψ−Φ<>Ψ−Φ<−= 11 ||/||tan ββββ λλδ HHT                                          (27) 
 
From this equation, phase shifts can be determined easily because all the 
quantities are known. By suitable choice of nonlinear parameters in Φ, the 
closed channel wave function, we can get the desired values of k at which 
phase shifts are desired.  The phase shifts obtained by Houston and 
Drachman [11] are also shown in Table II. We see that that their results are 



fairly accurate. They also calculated the scattering length for which they 
obtained a = -2.10278a0 which is, not only in agreement with Schwartz’s 
value -2.10a0  [5] , but it is an improvement over his result. 
 
Positron scattering calculations by atomic hydrogen at intermediate energies 
have been carried out by Higgins, Burke and Walters [12]. They used the R-
matrix formulation and calculated cross sections for S, P, D and F waves.  
 
They have also calculated phase shifts at low energies for S, P, D and F 
waves. Their low energy results for S and P waves agree very well with 
those given in Tables II and III.  
 
Kernoghan et al. [13] have calculated cross sections for positronium -
formation, excitation and ionization of hydrogen atoms for positrons in the 
energy range 30 to 100 eV incident on atomic hydrogen. This is a 33-state 
close-coupling calculation. Their results, shown in Table V, agree very well 
with the measurements carried out by Zhou et al. [14]. The experimental 
results of Ref. 14 are taken from Ref. [13].  
 
 
Table V. Total cross sections (πa0

2) for positrons incident on hydrogen 
atoms. 
         Enegy (eV)           Experiment              Theory 
               30           15.047.4 ±               4.68 
               50          14.051.3 ±                3.41 
               75            15.063.2 ±                2.64 
             100            13.021.2 ±                 2.13 
 
 
 
As we move to targets with several electrons, then there are no simple 
expressions for the target wave functions which can be used in the 
calculations. Houston and Drachman [11] carried out the scattering 
calculations by choosing different approximations of wave functions for the 
helium atom. They chose the one which gave them the best polarizability of 
the helium atom (α=1.376a 3

0 ). The wave function is given by 
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where z=1.4558 and c=0.6. Φ is the wave function of the helium atom. 
 
Their results for S-wave are shown in Table VI. 
 
Using the Kohn variational principle, Humberston and Campeanu [15] have 
calculated P-wave phase shifts. Their results are also shown in Table VI. 
 
Phase shifts for the higher partial waves can be calculated by using the 
expression given above in Eq. (24).   
 
 
Table VI. S- and P-wave positron-helium phase shifts obtained by Houston 
and Drachman [11] and Humberston and Campeanu [15], respectively. 
                   K S-wave  phase shifts [11] P-wave phase shifts 

[15] 
                 0.1                0.035             0.003 
                 0.2                0.049             0.010 
                 0.3                0.039             0.019 
                 0.4                0.020              0.030 
                 0.5               -0.003             0.041 
                  0.6               -0.034             0.048 
                  0.7               -0.069             0.054 
                  0.8               -0.106             0.058 
                  0.9               -0.143             0.061 
                  1.0               -0.177             0.061 
                  1.1                -0.211  
 
 
Using the Kohn variational principle in the R-matrix code, Stein and 
Sternlicht [16] have also calculated phase shifts. Their results agree with the 
above results.  
 
Kauppila et al. [17] have measured total cross sections for the scattering for 
positron-He and electron-He at various energies. They find that the two 
cross sections are very close to each other at high energies. At high energies, 
only the static interaction remains. Therefore, according to the first Born 



approximation, total cross sections for e + -He and e − -He should be the same. 
This is borne out from the results of the measurements shown in Table VII. 
Table VII. Measured total cross sections (πa 2

0 ) for positron and electron 
scattering from He atoms measured by Kauppila et al. [17]. 
         Energy(eV)               e + -He                 e − -He 
                  50                1.27               1.97 
                100                1.16               1.26 
                150                0.967               0.987  
                200                0.796               0.812 
                300                0.614               0.621 
                500                0.437               0.434 
                600                0.371               0.381 
 
 
 
Annihilation parameter, Zeff  
 
Annihilation of positrons and electrons was mentioned in the beginning. 
This gives rise to a 511 keV line which has been seen in the Galactic center 
and also in solar flares. The partial cross section for annihilation of an 
incoming positron and an atomic electron with the emission of two gamma 
rays is given by 
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where α is the fine-structure constant and a0 is the Bohr radius. It approaches 
Z,  the charge of the nucleus when the positron is represented by a free 
particle, as indicated by Ferrell [18]. The general expression given by Ferrell 
is  
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Bhatia et al. [19] have calculated  Zeff for l=0 and 1, because they already 
had calculated the wave functions very accurately for these two partial 
waves. For higher partial waves they have given a formula from which this 
quantity can be calculated: 
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Their results are given in Table VIII. Drachman [20] has also calculated Zeff 
for positron-hydrogen. His results are also given in Table VIII. 
 

Table VIII. Zeff for positron-H scattering 
         k        Zeff(0)      Zeff(0)           

(Ref. 20) 
      Zeff(1)    Zeff(>1)   Zeff(total) 

        0.1      7.363       7.5      0.022       <0.001      7.385 
        0.2          5.538       5.7      0.090         0.001      5.629 
        0.3      4.184       4.3      0.187         0.004      4.375 
        0.4      3.327       3.3      0.294         0.010       3.631 
        0.5      2.730       2.7      0.390         0.022       3.142 
        0.6      2.279       2.3      0.464         0.039       2.782 
        0.7      1.950       …      0.528         0.063       2.541 
 
It is noticed that Zeff decreases as the incident momentum increases. Bhatia 
et al. [19] compared their results for l=0 with those obtained by Humberston 
and Wallace [21]. The agreement is good, although it improves with 
increasing k. 
 
There are no calculations of Zeff from 2s and 2p levels of the hydrogen atom. 
Up to now no experiments have been carried out for the scattering of 
positrons from the excited state of the hydrogen atom. For this reason, there 
has not been much incentive to study the scattering from the excited states 
and therefore no calculations of Zeff  from the excited states are available.   
Calculation of Zeff in helium has been carried out by Drachman [20]. Here 
Dirac rate corresponds to 2.  These calculations were improved considerably 
by Humberston and Reeth [22] who calculated  Zeff = 3.88±  0.01 at a low 
energy which agreed with the experimental result 3.94 ±  0.02 of  Coleman 
et al. [23]. Humberston and Reeth [22] find that Zeff decreases at first and 
then at some incident positron energy it starts increasing becoming very 
large at the threshold of the positronium formation.  
 
Laricchia and Wilkins [24] indicated that at higher positron energies Zeff is 
given by  



 
                     Zeff ∝  |E – Ethr|-1,                                                                    (34) 
 
where E is the energy of the positron, Ethr = I - |E1s| and I is the ionization 
potential of the atom.  The above expression indicates that Z eff  becomes 
infinite when E approaches the threshold. It was shown by Garbakin and 
Ludlow [25] that the correct dependence should be given by  
 
                    Zeff ∝  |Ethr – E|-1/2.                                                                   (35) 
 
In this relation, Ethr must include the life time of positronium and then Zeff is 
finite. This relation gives Zeff which is continuous across the threshold. This 
relation was further confirmed by Igarashi, Kimamura and Shimamura [26].  
 
 
Bound State of positron-hydrogen 
 
There have been attempts to find the existence of the bound state of 
positron-hydrogen system. Most of the calculations found that the positron 
does not bind with hydrogen atoms. This was shown conclusively by 
Aronson, Kleinman and Spruch [27]. Rotenberg and Stein [28] concluded 
that if the mass of the positron is 2.2me, then positron does bind with 
hydrogen atoms. But then it is not the antiparticle of the electron. 
 
Mitroy et al. [29], using configuration type wave functions or correlated 
Gaussian functions, have shown that a positron binds to various atoms. They 
find that the polarization potential is an essential part of the Hamiltonian. 
The binding energy with various atoms is shown in Table IX. 
 
Table IX. Binding energy (Ry) of positron with various atoms. 
    He( 3 S)       Li        Be       Na      Mg       Ca 
 0.0011848  0.004954  0.006294  0.000946  0.031224   0.03300 
      
        Sr        Cu       Ag      Cd   
    0.0201 0.011194  0.011664   0.01220   
 
 
Binding energy with a Ca atom is the maximum and with Na the least. In the 
case of e + Li and e + Na, the systems can be described as Ps orbiting a charge 
Li +  and Na + , respectively.  System like e + Be consists of a positron orbiting 



a polarized Be atom. These systems decay with lifetime of 10 9− sec due to 
the annihilation of the electron with the positron. 
 
Dzuba et al. [30,31], combining a configuration-interaction treatment of the 
valence electron and positron, with many-body perturbation description of 
their interaction with atomic core, find the binding energies with copper, 
silver and  gold atoms are 170, 200, 220 meV, respectively. Their method is 
a relativistic method. Their results agree very well with those of Mitroy et al. 
[29] 
 
Gribakin, Young and Surko [32] have shown from the measurements that 
positrons bind to many molecular species. For low-energy positrons, Zeff  is 
very large and depends on the size of the molecule. For alkane C12H26 it is 
9800000 and for aromatic C10H8 it is 1240000. 
 
 
Resonances 
 
Autoionization states are resonances caused by scattering of an electron or 
positron impinging on a target ion or atom. In the case of electrons in a 
target or ion, they can also be produced by photoabsorption as well as by 
heavy-particle collisions. Resonances have been studied in great details as a 
result of experimental and theoretical developments together with the advent 
of high speed computers. The resonances we are interested in are called 
doubly-excited-states or Feshbach resonances. They are doubly-excited 
states because the electron in the lower state is at the same time raised to the 
higher level. They are called Feshbach resonances because they have been 
studied in great detail by the use of Feshbach-projection operator formalism 
[7]. The resonance states decay after a while. Therefore, they have a finite 
life time and we need to calculate widths of these resonances.  
 
Experimentally, they appear in the form of a discrete spectrum which is 
embedded in the continuum. If they are formed by the absorption of photons 
then they show up as a line in the absorption spectra. 
 
Resonances in the electron-atom system are ubiquitous, and it has not been 
very difficult to calculate them. But in the case of positron-hydrogen 
scattering, it has not been easy. The first successful prediction of an S-wave 
resonance was made by Doolen, Nuttal and Wherry [33]. They used a 
sparse-matrix technique for large basis sets in the complex-coordinate 



rotation method. In this method, the radial coordinates are transformed by an 
angle θ: 
 
 θirer →  .                                                                                                     (36) 
 
The transformed Hamiltonian is now given by  
 

θθ ii VeTeH −− += 2                                                                                            (37) 
 
Their wave function is given by  
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with u=a(r2+r12-r1), v=a(r1+r12-r2) and w=2a(r1+r2-r12). Here Ll

(0) is a 
Laguerre polynomial and a is a positive nonlinear parameter. 
 
They found one resonance below the excitation threshold and above the 
positronium pickup threshold. The complex energy is given by 
 
E(resonance) = Re(E) + iIm(E) = Re(E) – iГ/2.                                         (39) 
 
In this method, Im(E) is plotted vs. Re(E) and one looks for stationary paths 
as the angle θ is increased for various nonlinear parameters in the wave 
function, as discussed by Ho [34]. The results of Doolen et al. [33] are 
shown in Table X. 
 
 

Table X. Position and width of the resonance 
     Number of terms             Re(E)           Г/2= -Im(E) 
                286         -0.2573744         0.0000676 
                364         -0.2573733         0.0000674 
                455         -0.2573745         0.0000671 
                 560         -0.2573740         0.0000677 
                 680         -0.2573741         0.0000677 
 
They conclude that the resonance is at E= -0.257374 -0.000067i within an 
error of no more than 10-6 in each part. 
 



A more extensive calculation to predict resonances below the higher 
thresholds has been carried out by Varga, Mitroy, Mezei and Kruppa [35]. 
Their results are shown in Table XI. 
 
 
 

Table XI. Positron-hydrogen resonances below n=2, 3 and 4 thresholds 
              Threshold              Position                Г/2 
                  H(n=2)               -0.257244             0.000066 
            -0.250262             0.0000048 
                  H(n=3)            -0.116094             0.000642 
            -0.112006             0.0001566 
                  H(n=4)            -0.076958             0.0000394 
            -0.067714             0.0000264 
            -0.064380             0.00001688 
 
 
It used to be thought that there cannot be resonances in positron-He+ system 
because of the repulsive potential between the incident particle and the 
target. Bhatia and Drachman [36] showed the existence of several 
resonances by using the stabilization method. This generated some 
controversy for and against this prediction.  Later on Ho [37] proved the 
correctness of our results and also calculated the width of these resonances.  
His results, obtained using the complex rotation method, are given in Table 
XII. 
 
 

Table XII. S- and P- resonances in e+-He+  scattering 
             Position              Г/2 
            S-wave           -0.74099              0.12943 
            -0.3712              0.0393 
            P-wave            -0.70869              0.17752 
            -0.36956              0.04317 
 
 
Bound States of positronium with atoms 
 
Mitroy et al. [29] have calculated the binding energy of Ps with various 
atoms. Their results are shown in Table XIII. 



 
 
Table XIII. Binding energy (Ry) of Ps with various atoms. 
      H       Li     Na       K     Cu 
0.077834 0.024682 0.016838 0.006550 0.007482 
 
 
Cheng, Babikov and Schrader [38] has given an expression to find the 
binding energies of positron with various atoms. The equation is written as 
 
γ2 = -0.2793Vi -0.1466α + 0.0238Viα + 03646Ns + 1.6757,                      (40) 
 
where Ns is the number of valance s electrons, Vi is the ionization potential 
in eV and α is the polarizability of the atom in Angstrom units. They have 
calculated binding to a number of atoms and their results are in fair 
agreement with those of Mitroy et al. [29]. 
 
 
Properties of Ps − and Photodetachment 
 
The positronium negative ion, consisting of two electrons and a positron, is 
particle stable and decays only by e +  and e −  annihilation into gamma rays. 
The singlet state with a life of 1.244x10 10− sec decays into two gamma rays 
while the triplet state with a life time of 1.4205x10 7− sec decays into three 
gamma rays. Its existence was first predicted by Mohorovicic [39] in 1934. 
It was shown by Wheeler [40] in 1946 by a variational calculation that two 
electrons and a positron have a bound state. 
 
 Bhatia and Drachman [41] calculated its ground state (1S) energy by using a 
trial function of the Hylleraas form given in Eq. (12). They had nonlinear 
parameters γ and δ and ά=0 in Eq. (12). They calculated expectation values 
of delta functions, and cusp conditions as well and they are given by  
  
 
                         ν i  = <δ(r i ) idrd / >/<δ(r i )>                                                (36) 
                          
                         ν 12  =<δ(r 12 )d/dr12 >/<δ(r 12 )>                                              (37) 
 
 



Here r1  and r 2  are the relative distances of electrons 1 and 2 with respect to 
the positron, and r12 =|r 1  - r 2 |. The nonlinear parameter γ is equal to 0.604 
for all values of N. The results for the binding energies, expectation values 
of δ functions and cusp conditions are given in Table XIV. 
 
 
 
 
Table XIV. Binding energy (Ry) of 1 S state of Ps − , expectation values δ 
functions and  cusp conditions.  
      N      δ Binding 

energy 
   δ(r i )    δ(r 12 )       ν i     ν 12  

   120   0.296 0.024009966 0.020733 .00017190 -0.5000 0.49347 
   165   0.314 0.024010079 0.020773 .00017164 -0.4999 0.49441 
   220    0.313 0.024010113 0.020733 .00017150 -0.5000 0.49508 
 
 
The cusp quantities test the accuracy of wave functions near points of 
coalescence, since ν 1=ν 2 =-1/2 and ν 12 =+1/2 for exact solutions of the 
Schrödinger equation. Our solutions are seen to be quite good.  
 
In a later calculation, Bhatia and Drachman [42] obtained binding energy of 
Ps −  equal to 0.0240101396 Ry for 615 terms in the wave function. Bhatia 
and Drachman [42] also calculated the relativistic correction -6.25x10 6−  Ry. 
Therefore, the nonrelativistic energy is lowered by this amount.  
 
To a sufficient accuracy, the Ps − decay rate is  
 
Г=2πα 4 (c/a 0 )[1-α(17/π-19π/12)]<δ( 1r

 )>                         
   =100.6174  <δ(r1)>  nsec 1− .                                                                     (38) 
 
In the above equation, the correction term proportional to α is due to the 
triplet lifetime and the leading correction to the singlet lifetime. Inserting the 
expectation value of the δ function, we obtain  the decay rate 
Г(nsec) 1− =2.0861. This is in agreement with the measured value Г=2.09±   
0.09 (nsec) 1− , obtained by Mills [43] .  
 
Mills [43] suggested that Ps −  ions could be used to generate positronium 
(Ps) beams of controlled energy; this would involve acceleration of Ps −  ions 



and photodetachment of one electron. Bhatia and Drachman [44] calculated 
the dipole transition matrix elements by two simplifications: the initial state 
is represented by an asymptotic form whose normalization comes from our 
accurate Ps −  wave function and the final state is a plane wave. They find 
that the cross section in the length and velocity form can be written as 
 

Lσ  = Vσ  = (1.32 x 10 18− cm 2 ) 3

)( 22

3

γ+k
k .                                                  (39) 

where k is the momentum of the outgoing electron and γ 2 =0.024010113 Ry 
is the binding energy of Ps − , which is given in in Table XIV.   
 
A scattering calculation for the final state has been carried out by Ward, 
Humberston and McDowell [45] to calculate the photodetachment of Ps − . 
The results obtained in their calculations agree very well with those of 
Bhatia and Drachman [44]. 
 
 
PsH  
 
This system, called positronium hydride, consists of a positron, two 
electrons and a proton .The hydrogen atom has only 1 S bound state but no 
triplet states. Therefore, positronium and hydrogen atom can form a bound 
state with 1S state only of the hydrogen atom. The most accurate value for 
its total energy has been obtained by Ho [46] is -1.57505 Ry. He used 
correlated functions of modified Hylleraas type, involving the six inter-
particle coordinates. The system is stable against dissociation into Ps+H and 
has a binding energy 1.021 eV. 
 
This system can also be viewed as a positron + H −  system. Then PsH must 
have an infinite number of bound states because of the Coulomb field 
between the positron and the hydrogen ion. But because of the Ps+H open 
channel, these states become resonances. Using a wave function in the 
Hartree-Fock approximation 
 

)2,1()( −Φ=Ψ HHF xG                                                                                       (40) 
 
Drachman and Houston [47] obtained the first S-wave resonance parameters: 
  
E R  =-1.1726±  0.0007 Ry,                                                                          (41) 



 
Г = (4.6 ±  1.1)x10 3−  Ry                                                                             (42) 
 
The resonance parameters were also calculated by Ho [46] using the 
complex-rotation method. His results are given below 
 
 E R  =-1.205±  0.001 Ry,                                                                             (43) 
 
Г = (4.55 ±  2.0)x10 3−  Ry                                                                           (44) 
 
The resonances have coupling with the continuum. Di Rienzi and Drachman 
[48] carried out a calculation for L=1 resonance where both the open and 
closed channels are included. Using their notation, the wave function is 
given by  
 

),()()()()()()()(),,( 2112221121 rrxGrRFrRFxrr 
Φ++=Ψ ψρϕψρϕ .                       (45) 

 
In the above equation 1r

  and 2r
 are the position vectors of the two electrons 

relative to the proton taken as fixed at the origin, and x  is the position vector 
of the positron. The center of mass of the Ps and its internal coordinates are 
 

 
2/)(

2/)(

22
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xrR

xrR


+=

+=
                                                                                             (46)                                                
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rx
rx

−=
−=

ρ
ρ                                                                                                     (47) 

 
The internal coordinates of H and Ps atoms are known exactly and their 
wave functions are given by 
 

πψ /)( )( rer −=                                                                                             (48) 
   
and 
 

πρϕ ρ 8/)( )2/(−= e                                                                                        (49) 
 



 The function )(RF


 represents Ps-H scattering. Both atoms are in unexcited 
states and xG ( ) is the wave function of the positron bound to 1S state of  the 
hydrogen ion. The nonrelativistic Hamiltonian is given by 
 
H=- 212112

22
2

2
1 /2/2/2/2/2/2 ρρ −−−−++∇−∇−∇ rrrxx     (50) 

 
They obtained an optical potential equation variationally for the scattering 
function )(RF


 which includes exchange and the coupling between the closed 

and open channels. That equation with the optical potential is given below: 
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The exchange Kernel K and Vn have been discussed in the paper by Di 
Rienzi and Drachman [48]. 
 
Their calculations are rather complicated. By including 2p and 3p states of 
hydrogen atom, they obtained in Ry units 
 

3287.0=RE   00060.0=Γ ,                                                                        (53) 
 
which compares well with the results obtained by Yan and Ho [49] and Ho 
and Yan [50]: 
 
ER =0.3149       Г =0.0032                                                                           (54) 
 
 
In another paper, Di Rienzi and Drachman [51] have investigated D state 
resonances and their results are given in Table XV. 
 
 
 
 
 



           Table XV. D states in PsH. The results are in eV. 
                States            Energy                   Г 
                E1  (3d)              4.708            0.394 
                E1  (3d+4d)              4.729            0.327 
                E1 [49]              4.710 0027±        0054.00925.0 ±  
   
 
In the above table, the first row indicates energy of the first resonance when 
only 3d state is included and the second row indicates how it changes when 
3d and 4d states are included togather. The last row indicates the results 
obtained by Yan and Ho [49]. 
 
Calculations for Ps-H scattering, using a projectile elastic close-coupling 
approximation, have been carried out by Ray and Ghosh [52]. They calculate 
S-, P- and D-waves phase shifts. Some of their results for total cross sections 
are given in Table XVI. 
 
 
 
                    Table XVI. Ps-H scattering cross sections (πa0

2). 
                  Energy(eV)                    Cross section 
                     0.068                         48.3 
                     0.272                         36.2 
                     0.612                         27.3  
                     1.088                         22.4 
 
Ray [53] has carried out calculations for Ps-Li scattering using three 
approximations: first Born and static-exchange approximation and two-state 
close-coupling approximation. The long-range dipole correlation takes into 
account the 2p state of lithium. The equations were solved in momentum 
space. Total elastic cross sections for the scattering in the three 
approximations are given in Table XVII. The results obtained in different 
approximations are very close to each other. 
  
 
Table XVII. Total elastic cross sections (πa0

2) for Ps-Li scattering. 
     Energy(eV)      First Born  Static-exchange   Close-coupling 
            30         0.258         0.259          0.265 
            35         0.186         0.186           0.187 



            40         0.136         0.135           0.135 
            50         0.765         0.763           0.756 
            70             0.298         0.298           0.295 
           100         0.103         0.103           0.102 
 
 
She has also calculated cross sections for excitation of the lithium atoms to 
the 2p state. She finds no structure when the first Born approximation is 
used. However, there is a minimum at 15 eV and a maximum at 20 eV 
incident energies when two-state close-coupling approximation is used.   
 
 
 
 
 
Conclusions 
 
In this article, I have tried to discuss various processes involving interactions 
of positrons with atoms and ions. This includes scattering, bound states and 
resonances. It has not been possible to include the enormous work which has 
been carried out during the last 40 or 50 years in theory and measurements. 
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