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Using high-resolution microwave sky maps made by t he Ataca.ma Cosmology Telescope, we for 
the first time detect motions of galaxy clusters and groups via microwave background .temperature 
distortions due to the kinematic Sunyaev.Zel'dovich effect. Galaxy clusters are identified by their 
constituent luminous galaxies observed by the Baryon Oscillation Spectroscopic Survey, part of the 
Sloan Digital Sk~T Survey III. The mean pairwise momentum of clusters is measured. at a statistical. 
significance of 3.8 sigma, and the signa! is consistent with the growtn of cosmic structure in the 
standard model of cosmology. 

PACS numbers: 9S.52.Eh, 98.62.Py, 9S.70.Ve, 9S.S0.Es 

Introduction. The growth of cosmic structure over the' history of the universe inevitably results not only in the 



formation of den~ objects, but also in motions of these 
objects. 1-Ieasurements of these motions have the poten
tial to provide both a valuable consistency check on the 
standard cosmological model1 and also an independent 
route to constraining cosmological parameters and the 
nature of dark energy. 

In 1972, Sunyaev and Zel'dovich realized that a moving 
galaxy cluster, which is largely composed of hot, ionized 
gas in a dark matter potential well, will induce a small 
brightness temperature shift in the microwaye radiation 
passing through it. The shift is proportional to both 
the mass in electrons and the line-of-sight velocity of the 
cluster with respect to the microwave background rest 
frame [1, 2J. This kinematic Sunyaev-Zel'dO\ich (kSZ) 
effect is distinct from the thermal SZ (tSZ) effect, i:J 
which scattering from the same hot cluster gas creates 
a spectral distortion (see [3J for a review). In high-mass 
elusters (M '" 101' solar masses), the tSZ signal is typi
cally a factor of 20 larger than the kSZ signal; however, 
the two signals are comparable for the low-mass clus
te:s (M '" 1013 M0 ) which are far more abundant. (For 
brevity, we refer to any object with mass larger than 
1013 M0 as a cluster, even though objects below 1014 M0 
are usually referred to as "groups".) The tSZ effect from 
large clusters is now regularly observed in blind surveys 
[4-7J, but only upper limits for the kSZ effect from indi
vidual galaxy clusters have been achieved to date [8-10J. 

In this paper, we present a clear statistical detection 
of the motions of galaxy clusters through their kSZ sig
nal in arcminute-resolution microwave maps made with 
the Atacama Cosmology Telescope (ACT) [111. Lumi
nous galaxies are associated v/ith galaxy clusters [12, 13[ , 
and we use the Sloan Digital Sky Survey III (SDSS
III) Baryon Oscillation Spectroscopic Survey (BOSS) [14J 
catalog of these galaxies as galaxy cluster proxies, giving 
the skY location and redshift for thousands of potential 
clusters. We then treat the microwave temperature mea
sured by ACT in the direction of the cluster as a noisy 
estimator of the cluster1s line-of-s ight momentum, due 
to the kSZ temperature shift from that cluster. Individ
ual chster momentum measurements have a low signal
to-noise ratio, but we combine a large number of dif
ferential measurements to obtain estimates of the mean 
relative momentum of cluster pairs in bins of comoving 
cluster separation. This statistic is insensitive to the tSZ 
signal or galaxy emission. The conventional scenario of 
structure formation, driven by gravitational attractioD, 
predicts that any pair of clusters should have a slight 
tendency to be moving towards each other rather than 
away from each other [15, 16], and we see the expected 
signal in our data at a statistical significance of 3.8a. 

SUFJey Data Sets. We make use of two astronomical 
survey data sets. The first is a 148 GHz sky map from 
ACT, a dedicated microwave survey telescope in the At
acama Desert of Chile. The map covers a strip approxi
mately 3° wide and 110° long with an angular resolution 

2 

of 1.4', centered on the celestial equator and obtained 
over three observing seasons from 2008 to 2010 [l1J. Map 
pixels are 0.5' square, and. have a noise per pixel ranging 
from 15 to 25 I'K brightness temperature [17J; the map 
is calibrated to 2% by comparing with WUAP [181. (A 
similar map at 218 GHz has higher noise and is used for 
Table 1 "elow.) 

The second data set is a catalog of luminous galax
ies from BOSS Data Reiease 9 (a combination of the 
CMASS and LOZ samples from DR9), a component of 
the Sloan Digital Sky Survey III [19-21J. The catalog 
contains 27291 galaxies in a 220-square-degree region 
overlapping t he ACT sky region (right ascension range 
-43° to +45°) . Galaxies are selected to lie at least l' 
away from any radio source in the 1.4 GRz FIRST ra
dio catalog [22J; radio contamination is not a significant 
issue. Spectroscopic redshifts range from z = 0.05 to 
z = 0.8 with a mean redshift of 0.51; luminosities are 
estimated as in Ref. [24J. A halo-model correlation func
tion analysis shows that most of the BOSS galaxies re
side in haloes with masses around 1013 solar masses, with 
around 10% to 15% in haloes as large as 1014 M0 [23J. 

To estimate the microwave temperature distortion Ti 
associated with galaxy i, we match-filter the ACT 148 
GHz map with a characteristic filter scale at the map 
resolution of 1.4' [24J, to suppress noise from the pri
mary microwave background fluctu.ations. We then fol
low the procedure used in Ref. [24J: a 10' by 10' submap 
centered on the galaxy is repixellized into 0.0625' subpix
cis, convolved with the ACT beam profile to smooth the 
map, and then averaged over all subpixels within l' of the 
ga!axy. The l' binning radius l!1aximizes the signal-noise 
ratio of our kSZ detection, but Va.r:ving the binning radius 
between 4" and 4' only changes the detection significance 
by 0.50'. 

Lumi:~losity correlates with halo mass for the galaxies 
in our catalog. To confirm this 1 '-Ie divide our sample 
into five luminosity bins; Table 1 displays the mean cen
tral tempe=ature distortion corresponding to the galaxies 
in each bin. The rightmost column gives the linear com
bination of ACT 148 GHz and 218 GHz signals which 
correspo:Jds to the tSZ distortion brightness temperature 
at 148 GHz, with the next-largest component due to dust 
emission projected out [25J . Galaxies in the three highest 
luminosity bins, corresponding to about 20% of the total, 
show mean temperature decrements consistent with halo 
model cluster masses [23J and with the mean temperature 
decrements found in Ref. [24J. 

Mean Pairwise Momentum. Combining the above sur
vey data provides a set of galaxy cluster sky positions 
and redshifts (from the luminous galaxy positions and 
redshifts) and line-of-sight momenta (from the ACT tem
perature). To compare this data set with cosmological 
models, consider the mean pairwise momentum statistic: 

ppai,(r) = « Pi - Pi) . i'i;) , (1 ) 
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Bin Ngol (LO.l.) Lo,t .. Range (z) 6T148 

I 
OT218 oTtsz 

101OL0 1010 L0 I'K I'K I'K 
1 225 21.4 15.9 - 61.4 0.66 - 5.25 ± 1. 76 i + 1.90 ± 2.62 - 5.87 ± 1.96 
2 1326 11.8 9.9 - 15.9 0.62 - 1.09 ± 0.731 +2.07 ± 1.06 -1.76 ± 0.81 

3 4100 8.1 6.9 - 9.9 0.57 -0.04 ± 0.39 + 2.77 ± 0.59 -0.94± 0.43 
4 8467 5.8 5.0 - 6.9 0.52 +0.29 ± 0.27, + 1.97 ± 0.42 -0.35±0.30 

5 13173 3.7 om - 5.0 0.48 +0.39 ± 0.22 , +1.60 ± 0.34 -0.13±O.25 

1 total 1 272911 5.7 1 0.Ql - 61.41 0.51 1+0.17±0.161+1.92±0.23 1-o.45±0.181 

TABLE I: Mean brightness temperature fluctuations in sky directions corresponding to the BOSS DR9 galaxies, in bins of 
galax:: luminosity. The right column corresponds to the tSZ brightness temperature at 148 GHz, oTtsz == 6T148 - O.3250T21S ) 

projecting out a dust emission component i25}. The ACT maps are match-filtered at an angular scale of 1.4') equal to the beam 
size at 148 GHz, then subpixelized, convol\-ed with the beam profile, and summed over all subpixels within 4" of the galaxy. 

where galaxy cluster i has momentum Pi and comoving 
position ri, the comoving separation vector between a 
pair of clusters i and j is rij == ri - rj, overhats denote 
unit vectors, and the average on the right side of the 
equat:on is over all cluster pairs in a bin around comoving 
separa.tion r == Irijl. If two galaxy clusters are moving 
towards each other, their contribution to l'pai,(r) will be 
negative, and if moving apart, positive, An estimator of 
pp.i,(r) using only line-of-sight momenta is [26] 

(2) 

(3) 

where B is the angular separation between two clusters on 
the sky and r i = (r i I is the comoving distance to cluster 
i, which can be computed from the ciuster redshift us
ing standard ACDI\! cosmological parameters [27]. (The 
cluster velocity gives negligible contribution to the dis
tance estimate for clusters at a cosmological distance.) 
The statistic ppal,(r) is equal to the familiar mean pair
wise yelocity vpai,(r) [28-30[ times the average mass of 
the clusters in the sample. 

We can measure the line-of-sight component of the mo
mentum via the kSZ microwave temperature fluctuation, 
TkSZ,i ::=:: -NkSZ pi,fi , assuming that the ratio of the total 
cluster mass to its mass in hot gas is simply the univer
sal ratio of matter density am to baryon density ab [31[. 
The normalization NkSZ depends on the pixel scale and 
beam size of the microwave map, and the cluster density 
profile. Simulations including these effects [32] give an 
expec,ed mean temperature signal in the ACT 148 GRz 
map of 2.2 and 0.9 I'K for clusters with a typical line
of-sight velocity of 200 km/s and masses 1014 and lO13 
M 0 · 

The statistic ppol,(r) is both linear and differential, 
giving it desirable systematic error properties [33] . Any 
microwave temperature signal associated with individual 
galaxy clusters, like the tSZ effect, will average to zero 

as long as it does not depend on the relative ciistance 
between cluster pairs. Redshift-dependent signals can 
contribute to pp.I,(r) and be confused with the cluster 
kSZ signal, including infrared emission from galaxies in 
the cluster (which increases with redshift out to z = 2), 
any radio source emission, and small variations of the 
tSZ signal due to evolution of average cluster mass and 
temperature. However, we can measure these. effects on 
average by simply finding the average microwave tem
perature T(z) corresponding to clusters at a given red
shift, and correcting the temperature in the direction of 
an individual galaxy ciuster for this redshift-dependent 
piece. We evaluate a smoothed T(z) by averaging the 
temperature towards all galaxies, each with redshift z; 
and a gaussian weight factor exp[-(z - Z;)2 /2"~] with 
17% = 0.01; our results are nearly insensitive to the value 
of "z within a wide range. The resulting T(z) has a mean 
near zero and an absolute value of up to 3 11K. 

\\'·e thus evaluate the mean pairwise kSZ signal, cor
recting for possible redshlft-dependent tempera.ture con
tributions, as 

!iksz(r) = 
~«j [(T; - T(Z;)) - (Tj - T(zj) ] Cij (4) 

Ei<jC~j 

This quantity differs from Eq. (2) by the amplitude fac
tor NkSZ . Figure 1 displays this statistic for the ACT 
pixel temperatures corresponding to the 7500 most lumi
nous BOSS DR9 galaxies in the ACT sky region (£ > 
6.3 x 1010 £0); this luminosity cut minimizes the total 
noise from combined Poisson and pixel noise. Also dis
played is the signal extracted from a kSZ-only sky sim
ulation, based on underlying large-volume cosmological 
simulations [32], adjusting the mass limit of the simu
lation halos to give the best fit to the data. We infer 
that our galaxy luminosity cut corresponds to a cluster 
halo mass limit of roughly M 200 '" 2.5 X lO's M0 and a 
mean cluster halo mass of M 200 = 4.0 X lO'S M 0 • Er
ror bars are estimated ,ia bootstrap resampling. Neigh
boring bins have correlated error bars of around 20% as 
determined using independent simulation volumes. 
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FIG. 1: The upper panel shows the mean pairwise momentum 
estimator, Eq. (4), for the 7500 most luminous BOSS DR9 
galaxies within the ACT sky region (red points), with boot
strap errors. The solid line is derived from numerical kSZ sim
ulations [32J using a halo mass cutoff of M200 = 2.5 X 1013 M 0 . 

The measured signal is 3.Sa away from zero including bin cor
relations. The lowe: panel displays the same sum but with 
randc:nized map positions, and is consistent with null signal, 
O.4u f~way from zero. 

The measured points largely fall below zero and are 
consistent with the simulated signalj they differ from a 
null signal by 3.8a including correlations. The measured 
points approach zero signal as the comoving pair sepa
ration increases, which demonstrates that the signal de
pends on spatial separatior.., not redshift separation. 

Null tests are simple, as the statistic is essentially a 
sum 1)£ pixel temperatures, half v.r:ith positive and half 
with negative signs, with weights corresponding to rel
ative galaxy positions. Figure 1 also displays the null 
test corresponding to using the same weights but random 
pair positions compared to the signal plot (t.X' = 11.6 
for 15 <'.egrees of freedom). Success of this null test veri
fies t hat the function T (z) correctly models any redshift
dependent contributions to the microwave signal. Chang
ing the sign in the second term of Eq. (4) from negative to 
positive also gives a null signal (t.X2 = 9.9 for 15 degrees 
of freedom). 

Disc.ussion and Prospects. The signal in Fig. 1 repre
sents the first measurement of the cosmic velocity field 
madE directly with respect to the rest frame of the uni
verse" It is consistent with simulations based on the stan
dard cosmological model. This signal is also the first 
detection of the kinematic Sunyaev-Zel'dovich effect. A 
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recent attempt by Kashlinsky et al. to measure the large
scale bulk flow via the galaxy cluster kSZ signal uses 
galaxy clusters from X-ray surve;'s and searches for an 
overall dipole dependence of the microwave temperature 
in the Wl\IAP data at these locations [34, 35]. How
ever, Keisler [36] found the first reported detection was 
not statistically significant. Osborne et al. [37] reana
lyzed the most recent results including both a monopole 
and dipole term, obtaining limits on a bulk flow a factor 
of three below the reported detection of Ref. [35]. l\Iody 
and Hajian [38] also fail to reproduce the bulk flow result 
using Planck and ROSAT galaxy clusters. 

The detection of a non-zero mean pairwise momen
tum from a kSZ signal presented here can also be inter
preted as a measure of baryons on cluster length scales; 
a deficit of observed baryons has long been a cosmologi
cal puzzle [39]. Our signal is roughly consistent with the 
standard baryon fraction based on primordial nucIeosyn
thesis, given independent halo mass estimates based on 
clustering of our luminous galaxy sample. This issue will 
be addressed in a future paper. 

Future improved measurements of the mean pairwise 
velocity have the potential to put strong constraints on 
dark energy and modified gravity [4Q--42]. The meastu:e
ment we have presented here is the first step on a new 
path to constraining structure growth in the universe. 
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