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Abstract—A comparison of snow depths on sea ice was made7
using airborne altimeters and an Advanced Microwave Scanning8
Radiometer for the Earth Observing System (AMSR-E) simulator.9
The data were collected during the March 2006 National Aero-10
nautics and Space Administration (NASA) Arctic field campaign11
utilizing the NASA P-3B aircraft. The campaign consisted of an12
initial series of coordinated surface and aircraft measurements13
over Elson Lagoon, Alaska and adjacent seas followed by a se-14
ries of large-scale (100 km × 50 km) coordinated aircraft and15
AMSR-E snow depth measurements over portions of the Chukchi16
and Beaufort seas. This paper focuses on the latter part of the17
campaign. The P-3B aircraft carried the University of Colorado18
Polarimetric Scanning Radiometer (PSR-A), the NASA Wallops19
Airborne Topographic Mapper (ATM) lidar altimeter, and the20
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University of Kansas Delay-Doppler (D2P) radar altimeter. The 21
PSR-A was used as an AMSR-E simulator, whereas the ATM and 22
D2P altimeters were used in combination to provide an indepen- 23
dent estimate of snow depth. Results of a comparison between the 24
altimeter-derived snow depths and the equivalent AMSR-E snow 25
depths using PSR-A brightness temperatures calibrated relative 26
to AMSR-E are presented. Data collected over a frozen coastal 27
polynya were used to intercalibrate the ATM and D2P altimeters 28
before estimating an altimeter snow depth. Results show that the 29
mean difference between the PSR and altimeter snow depths is 30
−2.4 cm (PSR minus altimeter) with a standard deviation of 31
7.7 cm. The RMS difference is 8.0 cm. The overall correlation 32
between the two snow depth data sets is 0.59. 33

Index Terms—Author, please supply index terms/keywords 34
for your paper. To download the IEEE Taxonomy go to 35
http://www.ieee.org/documents/2009Taxonomy_v101.pdf. AQ136

I. INTRODUCTION 37

THE PRIMARY objective of the National Aeronautics and 38

Space Administration (NASA) March 2006 Arctic field 39

campaign was to assess the accuracy of the Aqua Advanced 40

Microwave Scanning Radiometer for the Earth Observing Sys- 41

tem (EOS) (AMSR-E) snow depth on sea ice retrievals [1]. 42

The field campaign consisted of an initial series of coordinated 43

surface and NASA P-3B aircraft measurements over Elson 44

Lagoon, Alaska and adjacent seas on March 18 and 20 followed 45

by a series of large-scale (100 km × 50 km) coordinated 46

aircraft and Aqua AMSR-E measurements over portions of 47

the Chukchi Sea, Kotzebue Sound, and the Beaufort Sea on 48

March 21, 22, and 25, respectively. A sixth flight on March 24 49

was coordinated with an ICESat overpass in the high Arctic 50

to support a study of the effects of snow cover variability 51

on ice thickness retrievals from the ICESat laser altimeter 52

[2]. All six flights were made from Fairbanks International 53

Airport, Alaska [Fig. 1(a)]. A transit flight to Greenland was 54

also made on March 27 in coordination with an Envisat Radar 55

Altimeter-2 overpass in the high Arctic to validate sea ice 56

elevation measurements derived from the Envisat microwave 57

altimeter [3]. 58

The Elson Lagoon flights on March 18 and 20 were used 59

to compare in-situ snow depth measurements with snow depth 60

measurements made from the airborne radiometer and altime- 61

ters. The results from these flights will be the subject of a 62

forthcoming paper. In this paper, we use data collected over 63

the flight areas of March 21, 22, and 25 [Fig. 1(a)] to compare 64

0196-2892/$31.00 © 2012 IEEE



IE
EE

Pr
oo
f

2 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

Fig. 1. (a) Six NASA P-3B flights made from Fairbanks, AK covered portions of Elson Lagoon near Pt. Barrow, AK, the Chucki and Beaufort seas, Kotzebue 4/C
Sound, and the high Arctic during the March 2006 AMSR-E Arctic field campaign. (b) AMSR-E snow depth map (5-day average) for March 21, 2006. The color
scale gives the snow depth in centimeters. Multiyear sea ice is masked out, because the snow depth retrievals are limited to first-year sea ice types only.

the snow depth retrievals obtained from the NASA P-3B altime-65

ters and from the radiometer which has the same radiometric66

channels as the AMSR-E sensor. Even with the aircraft making67

two or three passes over an AMSR-E 12.5 km grid cell, the68

coverage by the aircraft sensors was too sparse for a direct com- 69

parison with AMSR-E snow depths. Thus, we use the airborne 70

radiometer as an AMSR-E simulator to compare the microwave 71

radiometer and altimeter snow depths. Previous work used 72
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TABLE I
NASA P-3B AIRCRAFT SENSORS FLOWN DURING THE ARCTIC 2006 FIELD CAMPAIGN

both the high-resolution airborne laser altimeter retrievals of73

snow-ice freeboard and the passive microwave retrievals of74

snow depth from this campaign to provide insight into the75

spatial variability of these quantities as well as optimal methods76

for combining high-resolution satellite altimeter measurements77

with low-resolution snow depth data [4].78

The original intent of this work was to use the airborne79

altimeters as a validation tool to assess the AMSR-E sea snow80

on sea ice retrievals, but since the altimeter elevation differences81

used as a measure of snow depth on sea ice have yet to be vali-82

dated, we present a comparison between the airborne altimeter-83

derived snow depths and the airborne microwave radiometer-84

derived snow depths using an equivalent AMSR-E snow depth85

on sea ice algorithm. The comparative results provide insight86

into the limitations of both the altimetric and radiometric snow87

depth retrievals.88

II. METHODOLOGY89

A. EOS Aqua AMSR-E Satellite Data90

The AMSR-E was launched in May 2002 on the Aqua satel-91

lite. AMSR-E is a state-of-the-art sensor measuring microwave92

emissions over a broader range of wavelengths and with better93

spatial resolution than previous satellite radiometers. AMSR-E94

was designed and built by the Japan Aerospace Exploration95

Agency for the NASA EOS Aqua spacecraft [5]. The three96

AMSR-E sea ice products include sea ice concentration, snow97

depth on sea ice, and sea ice drift. In this paper, we make use of98

the snow depth on sea ice product.99

AMSR-E snow depth on sea ice is a 5-day averaged gridded100

product at a resolution of 12.5 km and is derived using an101

algorithm described by [6]. While the product is available for102

both the Antarctic and Arctic, in the latter region, the snow103

depth retrievals are limited to areas of first-year sea ice, because104

multiyear ice presents a fundamental ambiguity, which is dis-105

cussed later, making the retrieval of snow depth over multiyear106

ice indeterminate, at least at present. An example of the 5-day107

AMSR-E snow depth product is shown in Fig. 1(b).108

As described in [6], the snow depth on sea ice algorithm is109

linearly related to the spectral gradient ratio corrected for sea110

ice concentration GRV (ice) defined by111

GRV(ice) = [Tb(37V)− Tb(18V)− k1(1− C)]
/ [Tb(37V) + Tb(18V)− k2(1− C)] (1)

where Tb(37V) and Tb(18V) are the brightness temperatures 112

of the satellite radiometer and 113

k1 =Tbow(37V)− Tbow(18V) (2)
k2 =Tbow(37V) + Tbow(18V). (3)

Tbow is the open water brightness temperature, and C is the sea 114

ice concentration as determined by the enhanced NASA Team 115

(NT2) algorithm applied to the AMSR-E data [7]. 116

The snow depth hs in centimeters is given by 117

hs = a1 + a2 GRV(ice). (4)

Both the a1 and a2 coefficients were derived from a lin- 118

ear regression of in-situ snow depth measurements on SSM/I 119

microwave measurements [6]. These coefficients were sub- 120

sequently adjusted to take into account brightness tempera- 121

ture calibration differences between SSM/I and AMSR-E. For 122

SSM/I equivalent GRV, a1 has the value of 2.9 cm, and a2 has 123

the value of −782 cm. 124

The basis of the algorithm assumes that scattering increases 125

with increasing snow depth and that the scattering efficiency is 126

greater at 37 GHz than at 18 GHz. For snow-free first-year sea 127

ice, the gradient ratio is close to zero, and it becomes more and 128

more negative as the differential scattering increases resulting 129

from an increase in snow depth and/or an increase in grain size. 130

The upper limit for snow depth retrievals is about 50 cm which 131

is a result of the limited penetration depth at 37 GHz [8]. 132

The algorithm is applicable to dry snow conditions only. At 133

the onset of melt, the emissivities of both the 18 GHz and the 134

37 GHz channels approach unity (that of a blackbody) and 135

the gradient ratio approaches zero initially before becoming 136

positive. Thus, snow depth is indeterminate under wet snow 137

conditions. Snow, which can be wet during the day, frequently 138

refreezes during the night. This refreezing results in very large 139

grain sizes, which results in a reduced emissivity at 37 GHz 140

relative to 18 GHz, thereby decreasing GRV (ice) and thus 141

results in an overestimate of snow depth. These thaw-freeze 142

events cause large temporal variations in the snow depth re- 143

trievals. This temporal information is used in the algorithm to 144

flag the snow depths as indeterminate from those periods with 145

large fluctuations. As in-situ grain size measurements are even 146

less frequently collected than snow depth measurements, the 147

influence of grain size variations could not be incorporated 148

into the algorithm. Because of diurnal melt-freeze cycles and 149
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sporadic weather effects, AMSR-E daily snow depth products150

are 5-day running averages.151

Because of the higher sensitivity of snow depth retrievals152

to ice concentrations less than 20%, the algorithm limits snow153

depth retrievals to ice concentrations between 20% and 100%.154

Ice concentrations less than 20% appear almost exclusively near155

the ice edge, so the total area excluded is relatively small.156

Both multiyear ice and deep snow on top of first-year ice157

result in increasingly negative values for the spectral GR [9];158

therefore, the algorithm only retrieves snow depth in the sea-159

sonal sea ice zones. We currently use a dynamic GRV based160

filter which approximates the multiyear sea ice cover. This161

multiyear ice mask is defined on October 1 of each year as162

sea ice which has GRV values of less than −0.03. The same163

GRV test is done for each subsequent day, with the resulting164

classification being limited by the boundary of the previous165

day’s mask, with an allowance of a 1 pixel perimeter, to take166

into account the possible motion of the multiyear ice pack.167

B. Aircraft Data Sets168

The NASA P-3B aircraft carried the University of Col-169

orado Polarimetric Scanning Radiometer (PSR-A), the NASA170

Wallops Airborne Topographic Mapper (ATM) lidar altime-171

ter, and the University of Kansas Delay-Doppler (D2P) radar172

altimeter. The PSR-A was used as an AMSR-E simulator,173

whereas the ATM measured the range from the aircraft to the174

air/snow interface and the D2P measured the range from the air-175

craft to the sea ice/snow interface. The processing of the altime-176

ter measured ranges is quite complex and is discussed in detail177

elsewhere (e.g., [10]–[12]). The altimeter products used in this178

study are given as elevations measured in meters relative to a179

common geoid. The difference in altimeter elevations (ATM-180

D2P) was used to provide an independent estimate of snow181

depth. A summary of the aircraft instrument operating char-182

acteristics as well as the estimated precision of the altimeters183

obtained from previous field campaigns is presented in Table I.184

The method employed consisted of making three flights185

(March 21, 22, and 25) over large areas (100 km × 50 km)186

covering 32 AMSR-E grid elements (12.5 km on a side) on each187

day. The day before each of these flights, we utilized near real-188

time AMSR-E snow depth maps to plan the next day’s flight.189

On March 21, we covered an area in the Chukchi Sea which190

had a relatively shallow snow cover [Fig. 2(a)]. On March 22,191

we overflew an area in Kotzebue Sound which had a somewhat192

deeper snow cover [Fig. 2(b)], and on March 25, we flew over193

an area in the Beaufort Sea which had the largest apparent194

snow cover [Fig. 2(c)]. The orientation of each rectangular box195

in Fig. 2 matches the orientation of the flight lines shown in196

Fig. 1(a) for corresponding days.197

For the purpose of utilizing the PSR as an AMSR-E simula-198

tor, we calibrated the PSR 19 GHz V-pol. and 37 GHz V-pol.199

brightness temperatures relative to AMSR-E making use of all200

the data obtained for March 21, 22, and 25 resulting in a total201

of 96 data points (Fig. 3). The justification for using the PSR as202

a proxy for AMSR-E is the high correlation (0.94) between the203

AMSR-E and PSR GRV parameters (Fig. 4).204

Fig. 2. AMSR-E snow depths for portions of (a) the Chukchi Sea overflown 4/C
on March 21, (b) Kotzebue Sound overflown on March 22, and (c) the Beaufort
Sea overflown on March 25. The red rectangle in each image indicates the ap-
proximate area overflown by the NASA P-3B aircraft. Each rectangle measures
4 by 8 12.5 km AMSR-E pixels. The color scale gives snow depths in cm.

Once the PSR 19V and 37V brightness temperatures were 205

converted to equivalent AMSR-E brightness temperatures 206

using the regression equations shown in Fig. 3, the AMSR-E 207

snow depth algorithm was applied [(1) and (4)] to obtain PSR 208

snow depths. 209

Field airborne laser and radar altimeter measurements show 210

that the difference between the ATM elevation and the D2P 211
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Fig. 3. AMSR-E versus PSR regression plot for TB(19V) (left) and TB(37V)
(right).

Fig. 4. AMSR-E versus PSR GRV regression plot.

elevation provides a snow depth estimate consistent with cli-212

matologies [14], because the ATM measures the elevation of213

the air/snow interface and the D2P measures the elevation214

of the snow/ice interface both relative to a common geoid.215

Before using the altimeters as an alternate means of providing216

estimated snow depths, we needed to calibrate them relative to217

each other over some sea ice surface with a known snow depth.218

Newly frozen leads or polynyas provide such a surface. The219

rationale is that the ATM and D2P elevations should match over220

newly formed ice because there is only a minimal snow cover,221

if any at all. An analysis of ATM and D2P elevations measured222

over frozen leads and polynyas on all three days showed that the223

area with a minimum ATM-D2P elevation variance (2.41 cm)224

occurred over the frozen coastal polynya on March 22.225

The mean difference was −9.93 cm indicating that we needed a226

10 cm offset in the D2P elevations to obtain agreement between227

the two altimeters. While we cannot be sure that there was no228

snow cover, without this offset there were 122 negative snow229

depths obtained with a maximum negative value of −12 cm,230

whereas with the offset there were only 17 negative values the231

largest being −2 cm.232

Fig. 5 shows an Aqua MODIS image with the NASA P-3233

flight tracks superimposed for March 22, 2006. Segment A of234

the flight track over the coastal polynya was used to intercal-235

ibrate the two altimeters. The three aerial photographs shown236

as insets in Fig. 5 confirm that this segment was comprised of237

newly formed sea ice. Fig. 6 shows the effect of the 10-cm offset238

as applied to the D2P elevations which brings the ATM and D2P239

elevations into better agreement over frozen leads in a portion240

of the March 22 flight (segment B on Fig. 5).241

Fig. 5. NASA P-3 flight tracks (gray thin lines) on an Aqua MODIS image
of Kotzebue Sound for March 22. The aircraft altimeter data coverage is also
shown (black heavy lines). The segment highlighted within the large area
of grey ice (segment A) off the Alaskan coast was used to determine the
altimeter elevation statistics and the resulting offset between the ATM and D2P
elevations. The inset images are captured from the onboard digital camera and
show the character of the ice surface within the coastal polynya. Segment B is
the portion of the flight track used for the profiles in Fig. 6.

Fig. 6. Portion of the March 22 flight (segment B on Fig. 5) shows that a 10-
cm offset applied to the D2P elevations brings the ATM and D2P elevations
into better agreement over frozen leads.

Finally, for the purpose of obtaining a geolocated airborne 242

sensor data set, the D2P altimeter data were chosen as the 243

reference location. The ATM elevation and PSR brightness 244

temperature data were averaged over a 35 m diameter circle 245

around each given valid D2P point. The 35-m data sets were 246

smoothed either to a 1-km length scale or to the 12.5-km 247

AMSR-E grid scale for the comparison studies discussed below. 248

III. RESULTS AND DISCUSSION 249

The sea ice and snow cover characteristics of the areas 250

overflown on March 21, 22, and 25 are all quite different and are 251

discussed in the context of their microwave polarization (PR) 252

and spectral gradient (GR) signatures. PR is defined in terms of 253

the 19-GHz horizontal and vertical polarization PSR channels 254

PR19 = [TB19V − TB19H]/[TB19V + TB19H]. (5)
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Fig. 7. Plots illustrate the differences in PSR microwave PR-GR signatures for
the three study areas on (a) March 21, (b) March 22, and (c) March 25, 2006.
In each plot, the locations of pure first-year (FY), new (NEW), and multiyear
(MY) ice types are indicated.

Whereas GR is defined in terms of the 19-GHz and 37-GHz255

vertical polarization PSR channels256

GRV37/19 = [TB37V − TB19V/[TB37V + TB19V]. (6)

The PR-GR characteristics of each of these three areas are257

shown in Fig. 7 through the use of PR-GR scatter plots. The258

PR-GR plot for March 21 [Fig. 7(a)] shows a fairly tight cluster259

near PR of 0.05 and GRV of −0.02 which is typical of first-year260

ice types (e.g., [9]; [15]). A looser cluster of points, typical of261

new and young ice types, straddles the GRV value of 0 and262

extends to higher PR values. The plot for March 22 [Fig. 7(b)]263

Fig. 8. Plots illustrate the relationship between the altimeter measured snow
depths and the PSR GRV signatures for the three study areas on (a) March 21,
(b) March 22, and (c) March 25, 2006.

shows that in addition to the typical first-year ice distribution 264

of points, many points have more negative GRV values. The 265

more negative GRV values are likely the result of deeper snow 266

and the effects of the melt/freeze event that occurred in mid 267

February which may have resulted in a snow cover with ice 268

layers resulting in more scattering of the 37-GHz radiation 269

relative to 19 GHz. Finally, the area overflown on March 25 270

was comprised of first-year and multiyear sea ice with no new 271

and young ice types [Fig. 7(c)]. 272

Scatter plots of the altimeter snow depths versus the PSR 273

GRV values for each of the three study areas overflown are 274

shown in Fig. 8. The expected linear relationship between the 275
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Fig. 9. Sequence of images showing daily-averaged ECMWF surface atmospheric temperatures (top) and AMSR-E snow depth retrievals (bottom) for a two- 4/C
week period in February 2006. The study areas overflown on March 21 and 22 are indicated by red rectangles.

microwave parameter GRV, which is the independent variable276

in the snow depth algorithm [6], and the altimeter snow depth is277

lost for the March 22 and March 25 areas. Only for the March278

21 area does the linear relationship hold [Fig. 8(a)].279

Reasons for the lack of correlation for March 22 and 25280

[Fig. 8(b) and (c)] are difficult to determine with certainty.281

The lack of correlation for the March 25 flight in the Beaufort282

Sea is probably related to the large fraction of multiyear ice in 283

the region. However, the March 22 area in Kotzebue Sound is 284

devoid of multiyear ice, but contains ice having more negative 285

GRV values [Fig. 7(b)] than is normally observed in first-year 286

ice regions. As noted earlier, there was a large-scale melt-freeze 287

event in Kotzebue Sound during mid-February 2006. Fig. 9 288

shows a sequence of daily ECMWF (ERA-interim) atmospheric 289
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Fig. 10. Time series of the first 90 days of 2006 showing 6-hourly ECMWF surface air temperatures and daily AMSR-E GRV values corresponding to the
highlighted pixels in Fig. 9 for March 21 and 22. February 15, 2006 is the day when the air temperature exceeded 0 C. Note the difference in the behavior of the
AMSR-E GRV values for the two flight regions after the onset of melt.

temperatures and AMSR-E snow depth maps during mid-290

February covering both the Chukchi Sea and Kotzebue Sound291

flight areas overflown on March 21 and 22, respectively. It is292

clear from Fig. 9 that the flight area over Kotzebue Sound293

had positive daily-averaged air temperatures in mid-February,294

whereas the flight area over the Chukchi Sea had not. In partic-295

ular, during the period from February 14–20, two low pressure296

systems initially centered over the Gulf of Anadyr [Fig. 1(a)]297

migrated into the Chukchi and Beaufort seas, resulting in a298

combination of southerly winds, increased air temperatures,299

and a likely increase in down-welling, long-wave radiation as-300

sociated with increased cloud cover. With air temperatures near301

zero, it is also possible that some precipitation may have fallen302

as rain, which would have significantly affected the scattering303

properties of the snow cover. The Kotzebue weather station304

reported warming daily air temperatures from the beginning of305

February to February 15 when the maximum temperature of306

1.1◦C was reached. An increase in snow on the ground was not307

reported until February 25 when the measured snow and ice308

on the ground doubled to 28 cm. The maximum snow cover of309

43 cm reported at Kotzebue was reached during mid-March.310

The weather conditions and melt event in Kotzebue Sound311

may have resulted in a combination of deep snow and a312

metamorphosed snow cover with ice layers and coarser-grained313

snow. This melt event which affected the entire flight area is a314

probable cause for the lack of correlation shown in Fig. 8(b).315

Fig. 10 provides a time series of 6-hourly ECMWF surface316

air temperatures [16] and daily AMSR-E GRV values for the317

highlighted (red) pixels shown in Fig. 9 for the first three318

months of 2006. The red pixel within the red rectangle for319

Kotzebue Sound is located in the upper left portion of the320

flight area, and the red pixel for the Chukchi Sea is in the321

upper portion (Fig. 9). Following February 15, 2006, the day322

of maximum air temperature (+1.08 C), there is a marked323

difference in the behavior of the AMSR-E GRV values for the324

two flight regions after the onset of melt. The Chukchi Sea325

region apparently did not undergo the same degree of surface 326

melt on February 15 (Fig. 10). In fact, none of the 32 grid cells 327

overflown on March 21 had daily average air temperatures 328

above −0.9 C with the warmest temperatures occurring closest 329

to Kotzebue Sound [upper left in Fig. 2(a)]. The average of 330

the daily air temperatures on February 15 for the 32 grid cells 331

overflown on March 21 was −1.4 C. The GRV values for both 332

regions decreased initially after the melt event. The Chukchi 333

Sea GRV values became less negative beginning on March 334

12 and maintained values between −0.005 and −0.01 from 335

March 14 through March 29 (Fig. 10). The GRV values in this 336

range are typical of new, young, and thin first-year ice types. 337

Because the Chukchi Sea region is much more dynamic than 338

Kotzebue Sound, one possibility is that the February Chukchi 339

Sea ice cover was displaced by sea ice having different 340

(younger) surface characteristics. To explore this possibility, 341

we compare daily AMSR-E snow depth maps with IFREMER 342

(Institut Français de Recherche pour l’exploitation de la Mer, 343

Issy-les-Moulineaux, France) AMSR-E sea ice drift maps ob- 344

tained from (ftp://ftp.ifremer.fr/ifremer/cersat/products/gridded/ 345

psi-drift/documentation/amsr.pdf) for a 10-day period in March 346

2006. These maps are shown in Fig. 11. 347

From March 13 through March 17 the sea ice drift was 348

toward the north, but from March 18, 19, and 20, there was 349

even stronger ice drift away from the Alaskan coast (Fig. 11). 350

The Alaskan coast region between Cape Lisburne and Point 351

Lay [Fig. 1(a)] produces a large volume of ice each winter 352

through oceanic heat loss by coastal polynyas. The ice produced 353

is often swept up in large-scale cyclonic or anticyclonic gyres 354

and transported to other parts of the Arctic Ocean. The snow 355

depth maps in Fig. 11 show an increasingly large area of ice 356

with a shallow snow cover. Presumably, recently formed new 357

and young ice types were advected into the area overflown on 358

March 21 resulting in less negative GRV values (Fig. 10). 359

Next, we examine the AMSR-E pixel-averaged D2P and 360

ATM elevations, the altimeter and PSR snow depths, the 361
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Fig. 11. Sequence of images showing IFREMER AMSR-E sea ice drifts for a 2-day period together with the AMSR-E snow depths from March 13 to March 22 4/C
in the vicinity of Kotzebue Sound and the Chukchi Sea. The overflight areas for the Chukchi Sea on March 21 and for Kotzebue Sound on March 22 are indicated
by red rectangles as in Fig. 9.

ATM-derived surface roughness, and the AMSR-E snow depths362

for both the Chukchi Sea region overflown on March 21363

(Table II) and the Kotzebue Sound region overflown on March364

22 (Table III). The orientation of the AMSR-E grid elements365

in Table II is rotated 90◦ relative to the AMSR-E cells shown366

in Fig. 2(a). The orientation of the grid elements in Table III is367

similar to that shown in Fig. 2(b). The surface roughness was368

obtained by calculating the average standard deviation of the 369

ATM elevations over each AMSR-E grid cell in each table. 370

In Table II, for the Chukchi Sea area, both the D2P and ATM 371

elevations show similar spatial patterns as do the altimeter and 372

PSR snow depths with the deepest snow found in the upper left 373

and lower right portions of the 32-cell grid. A comparison of 374

the ATM roughness values with the altimeter and PSR snow 375
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TABLE II
MEAN (A) D2P ELEVATION, (B) ATM ELEVATION, (C) ALTIMETER SNOW DEPTH, (D) PSR SNOW DEPTH, (E) ATM ROUGHNESS, AND (F) AMSR-E
SNOW DEPTH FOR EACH OF THE 32 AMSR-E GRID ELEMENTS (COLUMN, ROW) OVERFLOWN ON MARCH 21, 2006. SHADES OF GRAY FROM LIGHT

TO DARK ARE USED TO INDICATE INCREASING VALUES FROM LOW TO HIGH. THERE WAS NO AIRCRAFT COVERAGE OF GRID (377,156)

TABLE III
MEAN (A) D2P ELEVATION, (B) ATM ELEVATION, (C) ALTIMETER SNOW DEPTH, (D) PSR SNOW DEPTH, (E) ATM ROUGHNESS,

AND (F) AMSR-E SNOW DEPTH FOR EACH OF THE 32 AMSR-E GRID ELEMENTS (COLUMN, ROW) OVERFLOWN ON MARCH 22, 2006.
SHADES OF GRAY FROM LIGHT TO DARK ARE USED TO INDICATE INCREASING VALUES FROM LOW TO HIGH
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depths shows that there is a positive correlation between snow376

depth and surface roughness for both the altimeter and PSR377

distributions. This is consistent with previous studies (e.g.,378

[17]). The AMSR-E snow depths are only weakly correlated379

with the surface roughness and the altimeter and psr snow380

depths. The latter result is probably due to the spatial sampling381

difference between aircraft and spacecraft.382

In Table III, for the Kotzebue Sound area, both the D2P383

and ATM elevations show a similar pattern with an increase384

in elevation from right to left which probably corresponds to a385

changing geoid. The change is about 1.5 m over a distance of386

100 km, length of the P-3 flight line (eight 12.5-km AMSR-E387

grid cells). A comparison of the altimeter and PSR snow depths388

shows no agreement for this particular day. In fact, there is389

deeper snow derived from the altimeters on the right side of the390

flight area, whereas the PSR deep snow is found on the left side391

of the area. One possible explanation is that the greatest effects392

from the mid-February melt/freeze event and storm passages393

were felt in the upper left of the flight area (see Fig. 9). Because394

of this large-scale event, the sea ice snow cover in the upper395

left portion of the flight area may have had ice layers imbedded396

in the snow cover, which would have been particularly likely397

if rainfall had occurred. These ice layers may have resulted398

in lower altimeter snow depths (Table III). Larger size snow399

grains in the affected area would have also caused the PSR snow400

depths to be overestimated [18], because of greater scattering at401

37 GHz relative to 19 GHz. Unfortunately, we do not have in-402

situ measurements to confirm this interpretation.403

Another factor influencing the altimeter snow depth retrievals404

is the change in velocity of electromagnetic radiation from air405

to snow. The snow depth correction (v/c), where v is the wave406

velocity in snow, c the speed of light in vacuo, is proportional to407 √
(ε′), where ε′ is the dielectric permittivity of saline snow (i.e.,408

the real part of the dielectric constant). A dielectric mixture409

model for saline snow [19] has been used to compute ε′. The410

model parameterization is a function of snow properties (den-411

sity ρ, salinity S, and temperature T), and the frequency of the412

radiation (15 GHz in our case). Our v/c correction ranges be-413

tween 0.7 (ρ=400 kg/m3 S=15 ppt T =265 K) and 0.8 (ρ=414

300 kg/m3 S=0 ppt T =255 K). This range has been used to415

establish uncertainties of the altimeter snow depths (Fig. 12).416

We plot the PSR snow depths versus the altimeter snow417

depths in Fig. 12 for the Chukchi Sea flight on March 21418

where we have a total of 880 coincident altimeter and PSR419

measurements spanning portions of 31 AMSR-E pixels. For420

the purpose of gaining insight into the effects of the air/snow421

velocity differences on the snow depth retrievals, we show three422

regression lines, one for the uncorrected altimeter snow depths423

(dashed line) and two others for the corrected altimeter snow424

depths (using the 0.8 and 0.7 v/c factors). The uncorrected425

velocity has the smallest slope of 0.43, whereas the 0.7 and 0.8426

corrected retrievals have slopes of 0.54 and 0.62, respectively.427

Although these corrections increase the slope slightly, we still428

have slopes much less than 1. The length of the error bar for429

each point shown in Fig. 12 is determined from the 0.7 and430

0.8 v/c corrections and provides a sense of how much the431

correction affects the snow depth retrieval. The variation in432

v/c which depends on the snow properties certainly contributes433

to the observed scatter. We also indicate surface roughness, 434

which is computed from ATM measurements, for each data 435

point in Fig. 12 through the use of a color scale. It is apparent 436

that both the PSR and altimeter snow depths increase with 437

increasing surface roughness. The correlations between the 438

PSR and altimeter snow depths and surface roughness are 0.60 439

and 0.67, respectively. 440

Finally, we calculate comparison statistics based on the PSR 441

and altimeter snow depth data sets for the Chukchi Sea flight on 442

March 21. We have not corrected the altimeter snow depths for 443

air/snow velocity changes, because of the large uncertainty in 444

the snow parameters needed for the correction. These statistics 445

are presented in Table IV. The mean snow depth difference 446

(PSR minus altimeter) is −2.4 cm with a standard deviation 447

of 7.7 cm. The RMS error is 8.0 cm, and the overall correlation 448

between the two snow depth data sets is 0.59. 449

IV. SUMMARY AND CONCLUSIONS 450

Although the original intent of the Arctic 2006 field cam- 451

paign was to use the airborne altimeters as a validation tool to 452

assess the AMSR-E snow on sea ice retrievals, we could not 453

undertake a validation study, because the altimeter elevation 454

differences as a measure of snow depth on sea ice have yet to 455

be validated. Thus, we could not justifiably use the altimeter 456

snow depths as a validation data set. Nonetheless, a com- 457

parison between the altimeter-derived and radiometer-derived 458

snow depths provided insight into the limitations of both 459

approaches. 460

Of the three flights made over the ice-covered seas surround- 461

ing Alaska, only the Chukchi Sea flight made on March 21 462

provided data which yielded a good correlation between the 463

altimeter and radiometer snow depths. However, the slope of 464

the regression line is much less (∼0.5) than 1. An understanding 465

of this requires a careful comparison of both the altimetric 466

and radiometric retrieval methods with in-situ snow depth 467

measurements. Snow depth retrievals over Kotzebue Sound on 468

March 22 were apparently affected by a melt-freeze event in the 469

previous month. This event may have produced ice layers in the 470

snow cover resulting in an underestimate of snow depth by the 471

altimeters. The first two flights were over first-year ice, whereas 472

the third flight over the Beaufort Sea on March 25 covered 473

an area comprised mostly of multiyear ice. The presence of 474

multiyear ice results in an ambiguous radiometric snow depth 475

signature, because of scattering of the upwelling radiation by 476

empty brine pockets in the freeboard layer of the multiyear ice 477

[20]. It is this ambiguous signature that probably led to the poor 478

correlation between the two snow depth data sets. Currently, 479

there is no way to distinguish between first-year ice with a deep 480

snow cover and multiyear ice. 481

The potential to retrieve snow depth from airborne lidar 482

and radar altimeter measurements has been demonstrated in 483

several studies (e.g., [12], [14]), but a true validation of this 484

method has not yet been demonstrated. Furthermore, there is 485

a recurrent need to apply an adjustment to the radar altimeter 486

data. Indeed, over some areas, the surface (i.e., the air/snow 487

interface) elevation tracked by the lidar is lower than the 488

snow/ice interface that should be detected by the radar, resulting 489
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Fig. 12. PSR snow depths versus the airborne altimeter-derived snow depths for March 21, 2006. There are three regression lines: one for the uncorrected4/C
altimeter snow depths (dashed line), one each for the 0.7 v/c corrected (light solid line), and the 0.8 v/c corrected (dark solid line) altimeter snow depths. ATM-
derived surface roughness for each point is color coded.

TABLE IV
COMPARISON SNOW DEPTH STATISTICS FOR THE MARCH 21, 2006 CHUKCHI SEA STUDY AREA

in unrealistic negative snow depths. An explanation of these490

negative snow depths is problematic. The current study and491

several previous ones [12], [14], [21] have encountered the need492

to adjust the radar altimeter measurements relative to the lidar493

measurements. Understanding this recurrent discrepancy must 494

be a priority for future studies that aim at using the difference 495

between airborne lidar and radar altimeter measurements as a 496

proxy for snow depth. 497
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Finally, the current status of the AMSR-E snow depth algo-498

rithm validation is that it is incomplete. We cannot provide an499

overall estimate of accuracy with any confidence. Some valida-500

tion studies have been undertaken with in-situ and ship-borne501

measurements [8], [17], but comparisons between satellite re-502

trievals and surface point measurements can in itself introduce503

biases [6]. Thus, there is still a critical need to develop validated504

methods of retrieving snow depth from airborne sensors to505

help bridge the spatial divide between satellite observations506

and surface point measurements. Furthermore, the AMSR-E507

snow depth algorithm currently does not take into account508

surface roughness or snow grain size variations, even though509

both of these parameters affect snow depth retrievals [8], [17].510

More comparative studies are needed covering different surface511

conditions at different times of the year. Previous studies [8],512

[18], [22] suggest that the use of the 10-GHz AMSR-E channels513

may help both in differentiating between smooth and rough514

surfaces and in lessening the affect of increasing snow grain515

size. Thus, work remains to be done to improve snow depth516

on sea ice retrievals from both microwave radiometers and517

altimeters.518
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