

The Effects of Thermal Cycling on Gallium Nitride and Silicon Carbide Semiconductor Devices for Aerospace Use

Richard L. Patterson, NASA GRC Ahmad Hammoud, VPL/NASA GRC

ABSTRACT: Electronics designed for use in NASA space missions are required to work efficiently and reliably under harsh environment conditions. These Include radiation, extreme temperatures, thermal cycling, to name a few. Preliminary data obtained on new Gallium Nitride and Silicon Carbide power devices under exposure to radiation followed by long term thermal cycling are presented. This work was done in collaboration with GSFC and JPL in support of the NASA Electronic Parts and Packaging (NEPP) Program.

NEPP Third Electronics Technology Workshop NASA Goddard Space Flight Center June 11 – 13, 2012

The Effects of Thermal Cycling on Gallium Nitride and Silicon Carbide Semiconductor Devices for Aerospace Use

Richard L. Patterson Ahmad Hammoud

NASA Glenn Research Center

NEPP Third Electronics Technology Workshop NASA Goddard Space Flight Center June 11 – 13, 2012

The Effects of Thermal Cycling on Gallium Nitride and Silicon Carbide Semiconductor Devices for Aerospace Use

NASA Working Group on Wide-Band Gap Semiconductors: A NEPP collaborative effort between GSFC, GRC, and JPL to address reliability of GaN & SiC Devices under radiation & thermal cycling

GRC NEPP-Task #:12-0281

Title : Reliability of Gallium Nitride (GaN), Silicon Carbide (SiC), Silicon Germanium (SiGe), Silicon-On-Insulator (SOI), and Advanced Mixed Signal Devices for Extreme Temperature Space Missions

GRC Manager: Richard L. Patterson

Thermal Cycling & Reliability of Electronics

- Various methods exist for performing thermal cycling tests to address reliability of electronics for long-term use.
- Existing Standards suggest various temperature rates & dwell times. Number of cycles are inconsistent, & synergistic effects are not covered.
- Standards generally address thermally-induced fatigue in solder joints, interconnects, and material interfaces, etc.

Temp Min/Dwell Time	Temp Max/Dwell Time	Standard
-65 ºC/30 min	125 ºC/30 min	MIL-STD-202 DM 107C
-65 ºC/30 min	150 ºC/30 min	MIL-STD-202 DM 107C
-25 ºC/10 min	125 ºC/10 min	EIAJ ED-4701-3
-40 ºC/10 min	85 ºC/10 min	IEC60749
-55 ºC/30 min	100 ºC/10 min	IPC0701A
-55 ºC/10 min	85 ºC/10 min	MIL-STD-883, Method 1010
-65 ºC/10 min	150 ºC/10 min	MIL-STD-883, Method 1010
-55 ºC/10 min	85 ºC/10 min	JEDEC JESD22-A104
-65 ºC/10 min	150 ºC/10 min	JEDEC JESD22-A104

Test Plan:

- Perform long-term thermal cycling on devices per profile below:
 - Total # of Cycles 1000
 - Temperature rate of change: 10 °C/min
 - Temperature range: -55 °C to +125 °C
 - Soak time at extreme temperatures: 10 min
- Repeat measurements on devices during cycling
- Perform measurements after conclusion of cycling activity

Test Setup

Parameters Investigated:

- I-V Output Characteristics
- Gate Threshold Voltage, V_{TH}
- Drain-Source On-Resistance, R_{DS(on)}
- Transconductance, g_m
- Tests performed at room temperature

Equipment Used:

- SONY/Tektronix 370A Curve Tracer
- Keithley 238 Source-Measure-Units

GRC Work Completed

Devices subjected to long-term (1000 cycles) thermal cycling

CREE 12 Vds = 28 Part # C0	CREE 120 W, RF Power GaN HEMTVds = 28 V, Depletion ModePart # CGH40120F								
# of Samples	Condition	lon	Range (µm)	Dose (rad)					
2	Irradiated Kr 1250 25.4 150 406400								
7	Control (un-irradiated)								

GRC On-Going Work

Devices subjected to long-term thermal cycling

EPC Enhancement-Mode GaN Power Transistors										
Туре	Specs	# of Samples	Condition							
EPC1001	100 1/ 25 4	4	Irradiated							
EFC1001	100 V, 25 A	4	Control (un-irradiated)							
EDC1010	200 1/ 12 4	2	Irradiated							
EPCIDIO	200 V, 12 A	4	Control (un-irradiated)							
EDC1012	200 1/ 24	2	Irradiated							
EPCIUIZ	200 V, SA	3	Control (un-irradiated)							
EPC1014		3	Irradiated							
CPC1014	40 V, IUA	4	Control (un-irradiated)							

RESULTS (Un-irradiated SiC MOSFETs)

RESULTS (Un-irradiated SiC MOSFETS)

CREE CMF20120D

Dev	Pre	-Cycle	After 7	8 Cycles	After 250 Cycles		After 60	0 Cycles	After 1000 Cycles	
/ice	V _{TH} (V)	R _{DS} (mΩ)								
1	2.85	640	2.88	631	2.85	480	2.77	380	2.79	360
2	2.61	550	2.56	520	2.49	480	2.54	370	2.50	354
3	2.51	480	2.51	568	2.47	460	2.48	310	2.42	337

OBSERVATIONS

- All devices maintained functionality after 1000 cycles
- The three MOSFETs experienced a slight decrease in V_{TH} and a modest decrease in $R_{DS(ON)}$ upon cycling
- No alteration in device packaging

RESULTS (Irradiated CREE GaN HEMT)

RESULTS (Irradiated CREE GaN HEMT)

Dev (Irrad	Pre-(Cycle	le After 78 Cycles		After 250 Cycles		After 600 Cycles		After 1000 Cycles	
rice liated)	V _{TH} (V)	g _m (mS)								
A8352	-3.375	790	-3.335	1840	-3.345	1840	-3.390	2260	-3.350	1920

National Aeronautics and Space Administration

RESULTS (Un-irradiated CREE GaN HEMT)

RESULTS (Un-irradiated CREE GaN HEMT)

After 600 Cycles

After 1000 Cycles

Dev (Con	Pre-(Cycle	cle After 78 Cycles		After 250 Cycles		After 600 Cycles		After 1000 Cycles	
rice htrol)	V _{TH} (V)	g _m (mS)								
A8345	-3.375	890	-3.380	1740	-3.325	1440	-3.40	2060	-3.35	2040

Cree GaN HEMT CGH40120F Mixed Samples Two Samples Post Irradiation by Kr Ions, 1250 MeV, 406.4 krad Seven Samples Not Irradiated

OBSERVATIONS

- All nine CREE GaN HEMTs remained functional after 1000 cycles between -55 °C & +125 °C
- Effects of thermal cycling was the same for both control & irradiated samples. The induced changes due to cycling included slight variation in V_{TH}, modest increase in trans-conductance, and slightly higher I_D values for given base conditions
- No changes observed in device packaging or terminations

GRC On-going Work

Devices presently undergoing thermal cycling

EPC1001 E- Mode GaN Power Transistor (100V, 25A), passivated die form										
# of Samples	Condition	lon	Energy (MeV)	LET	Range (µm)	Dose (rads)				
1	Irradiated	Au	2342	84.7	122.9	22718				
1	Irradiated	Xe	1569	98.8	124.5	8301.5				
1	Irradiated	Xe	1569	50.9	124.5	7886.8				
1	Irradiated	Xe	1569	98.8	124.5	15838				
4	Control									

EPC1010 E- Mode GaN Power Transistor (200V, 12A), passivated die form										
# of Samples	Condition	lon	Energy (MeV)	LET	Range (µm)	Dose (rads)				
1	Irradiated	Xe	1569	50.9	124.5	8719.6				
1	Irradiated	Au	2342	84.7	122.9	6634				
4	Control									

GRC On-Going Work

Devices presently undergoing thermal cycling

EPC1012 E- Mode GaN Power Transistor (200V, 3A), passivated die form										
# of Samples	Condition	lon	Energy (MeV)	LET	Range (µm)	Dose (rads)				
1	Irradiated	Xe	1569	50.9	124.5	6328.1				
1	Irradiated	Xe	1569	98.8	124.5	6340				
3	Control									

EPC1014 E- Mode GaN Power Transistor (40V, 10A), passivated die form										
# of Samples	Condition	lon	Energy (MeV)	LET	Range (µm)	Dose (rads)				
1	Irradiated	Xe	1569	98.8	124.5	6325				
1	Irradiated	Xe	1569	50.9	124.5	3154.8				
1	Irradiated	Au	2342	84.7	122.9	5337				
4	Control									

EPC1010 GaN FET (Specs: Vds = 200 V, Id = 12 A)

Supporting Electronics for GaN

New Half-Bridge Gate Driver for Enhancement-Mode GaN FETs, Type LM5113

Waveforms of HI(1), HO(2), LI(3), and LO(4) signals @ +23°C

Planned Work:

- Finish thermal cycling of the EPC GaN FETs.
- Perform long-term thermal cycling on second generation of EPC GaN FETs.
- Investigate effects of thermal cycling on new (control and irradiated) SiC and GaN power devices as parts become available from GSFC and JPL.