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Introduction: Many meteoritic and IDP samples 
contain bulk enhancements and hotspots rich in 15N (e.g. 
[1,2,3]). Similarly low C14N/C15N ratios have been ob­
sen'ed in numerous comets [4], An almost constant en­
richment factor in comets from disti'nct formation zones 
in the nebular disk (i.e. both Jupiter Family and Oort 
Clo~d comets), strongly suggests that this fractionation 
is primordial and was set in the protsolar cloud core [5J. 
Deuterium enrichment is observed in both meteorites 
and IDPs [6,2, 7J. 

Interstellar Chemistry: Ion-molecule reactions at 
low (~IO K) temperatures can lead to an enhanced D 
and 15N fractionation in interstellar molecules [8, 9J. 
Atcm-molecular ion reactions of the type 
15N + 14N2H+ ~14N + 15N14NH+ are important in en­
riching molecules in heavy nitrogen and, as in: the Cfse of 
deuterium, significant CO depletion permits much larger 
isotopic effects [IOJ. Helium ion attack on 14N15N re­
leases the 15N nuclei, as well as 15N+ ions which may 
react with H2 to form 15NH+ and subsequently ammo­
nia. Condensation of these gaseous products on dust 
grains leads to ices with bulk enhancements in ammonia 
of +800 %" and peak monolayer enhancements of a fac­
tor of seven (i.e. 6'5N = +6000 %" [II]. CO depletion 
and a negligible ratefor the reaction N + CN --+ N, + C 
pre'lents recycling of N atoms back into N, and leads 
to two distinct 15N fractionation pathways in dense in­
terstellar gas [12]: a slow one to ammonia (_10' years) 
and more rapid one to HCN and other nitriles (~lO' 
years). 

Isotopic Carriers and Correlations: The major 
goals for theories of isotopic fractionation in priLlitive 
materials based on interstellar chemistry are the ex­
planations of isotopic correlations, or lack thereof, the 
highly variable enrichment in specific molecular func­
tional groups, and the identification of candidate inter­
stellar fractionation environments and precursor molecules 
[13, 14, IS, 16]. In principle, the nature of the functional 
groups which display isotopic enhancements should be 
rel<ted to the interstellar molecules from which they de­
rive. For example, we may expect that isotopic anoma­
lies measured in carbonyl, nitrile, amine, aliphatic and 
aromatic functional groups [17, 18, 13,2,7, 19J should 
be related to the isotope ratios in potential interstellar 
pregenitors such as CO, HCN, NU3 , CH, & C,H6 , and 
PARs. 

The most pressing problem, however, concerns the 
fact that, while 15N and D hotspots do seem to corre­
late in some samples (e.g. [18]), they clearly do aot in 
others (e.g. [2, 7]), even down to the level of molecular 
subgroups in amino acids [16J. Yet, as has been noted 

by several authors [20, 21], the interstellar environments 
most conducive to producing enormous 15NP4N ratios, 
should also produce concomitantly large molecular DIH 
ratios (e.g. in ammonia or HCN). Thus, one would 
expect 15N and D hotspots to always be spatially corre­
lated, contrary to what is seen. This presents a serious 
challenge for interstellar-type ion-molecule chemistry. 

Spin-State-Dependent Isotopic Chemistry: The 
reaction rates associated with 15N and D fractionation 
vary strongly in the temperature range ~5-40 K [15]. 
Although a temperature regime may exist where modestly­
deuterated molecules with minimal 15N enrichment could 
exist, the converse - large 15N enrichments and no 
deuteration- , as seen in primitive matter, cannot occur. 
However, careful consideration of interstellar chemistry 
suggests a possible resolution of this problem. Some 
interstellar molecules can exist in either of two distinct 
states depending upon the relative alignment of the spins 
of their H nuclei (parallel or antiparallel), giving rise to 
ortlw and para forms. For molecular hydrogen, the o-H, 
ground state (J = 1) is 170 K above the p-H, ground 
state (J = 0); this internal energy difference can have a 
profound effect on ion-molecule chemistry at low tem­
peratures, especially deuteration [22, 23]. 

The key reaction for making molecular clouds molec­
ular is the formation of H, molecules on dust grains 
which are probably ejected into the gas upon forma­
tion with an olp abundance ratio (aPR) of 3: 1. At low 
temperatures, ion-molecule spin-exchange reactions in­
volving H+ and Ht will tend to convert most o-H, to 
p-H2 • The time-scale for this conversion depends on the 
ionization rate (, but is generally shorter than, or com­
parable to, the estimated lifetime of molecular clouds 
[24J. If present, a high abundance of 0-H, molecules 
acts as a 'poison' for deuterium fractionation because 
the reaction 

0-H,D+ + 0-H2 --+ p-Ht + HD 

can proceed rapidly, even at 10 K, and suppress inter­
stellar deuteration [24]. 

Conversely, the internal energy of o-H, is necessary 
to overcome the small barrier in the initiating reaction 
for ammonia formation, and hence 15NH3 fractionation: 

N+ + o-H, --+ NH+ + H 

Early estimates concluded that an H, aPR in excess of 
~ I 0-4 would be sufficient to account for the observed 
dense cloud ammonia abundances [25]. However, a re­
cent re-assessment of the aPR dependence in the orig­
inal experimental data indicates that the rate coefficient 
of this process has been overestimated by almost three 
orders of magnitude at low temperatues [26]. Thus, if 
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Figure 1: Time evolution of 15N enrichment in a cloud at 
physical paramets as given in the frame. The 14N/15N abun­
dance ratio is set to 400. Solid and broken curves are for H2 
OPR values of 3 and 1 x 10-5 respectively. Values for gas­
phase nitriles are not plotted after l05yr because the molecu­
lar abundances are negligible (see [12]). 

the H, aPR is comparatively large, deuteration is inhib­
ited but 15N fractionation can proceed. This leads to the 
expectation that, at low-temperatures, the H, aPR could 
mejiate a large range of D- 15N fractionation ratios in 
interstellar molecules. 

Model: To demonstrate the effect of the H, aPR on 
interstellar 15N fractionation, we have incorporated the 
resalts of Dislaire et al. [26] into the chemical model 
of Rodgers & Charnley [12]. We consider aPR values 
of 3 and I x 10-5 , the latter consistent with observed 
limits [27]. Fig. I shows that a low aPR does sup­
press 15N fractionation in ammonia although the ni­
triles remain enriched. On his time-scale (t ~ 105 yr) 
the gaseous molecules will become increasingly en­
riched in D as CO freezes out on dust. The fact that 
N+ + H, is less efficient when aPR ~ lx 10-5 means 
that at later times (t ~106 yr) the exchange reaction 
15N+ + 14N2 ~14N+ + 15N14N operates to enrich 15N 

in !'h, N,H+ and NH3 , although their abundances are 
quite low (cf. [II]). 

Summary: A more sophisticated treatment of low­
temperature ion-molecule chemistry, involving spin-state 
dependence in molecular reactants, has the potential to 
provide a natural explanation of the distribution of iso­
topic anomalies exhibited in primitive matter. Compre­
hensive theoretical models which account for these pro­
cesses in D, l5N and l3C fractionation can be tested by 
comparison with future ALMA observations of multiply­
fractionated molecules in analogues ofthe presolar cloud 
core, and allow us to quantify the interstellar contti­
bution to (functional group) fractionation measured in 
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primitive materials. 
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