Wavefront calibration testing of the James Webb Space Telescope primary mirror center of curvature optical assembly

Gene Olczak, Conrad Wells, David J. Fischer, Mark T. Connolly
SPIE 8450 – 26
July 2, 2012
Cryogenic Optical Test Configuration of JWST

Center of Curvature Optical Assembly (COCOA)
- Interferometer, null, calibration equipment
- Coarse/fine PM phasing tools
- Displacement Measuring Interferometer

• Absolute Distance Meter
Ray tracing of the system for finite conjugates with the primary mirror (PM) as the object reveals the interferometer imaging properties.
Imaging Performance In Test

Single Pass:
PM to Sensor

Double Pass
Objective Back Focus
to Objective Back Focus

- The test system has little distortion and diffraction limited imaging performance
System Wavefront Test (SWFT) i.e. Calibration

- During calibration the imaging performance is significantly degraded
Method discussed by Zhao and Burge (Reference 3)

- Analysis predicts more loss of pupil detail at the inner pupil at mid to high spatial frequencies

$$TF = \frac{W'}{W} = \cos\left(\frac{\pi \lambda z}{d^2}\right)$$
The Imaging SWTF (I-SWFT)

Objective Lens

Reflective Null

Imaging Lens

WMS Entrance Port (Pupil Image)

CGH

Path Without Imaging Lens

Path With Imaging Lens

Redesigned CGH is easier to fabricate than the baseline CGH
• 10% Smaller
• 33% Lower maximum line density
• 2.9 times less aspheric

- A lens in the calibration path forms a pupil image on the CGH
 - Diffraction limited pupil imaging performance is restored
 - New complication of characterizing and aligning the lens
Initial Testing

- Initial testing performed at a clean assembly facility (Micro Automated in Rochester, NY)
 - Not at optical test facility
 - Vibration was okay
 - Temperature variations well beyond interferometer operation range
 - Much larger than in-use case
Model Versus Measured Performance

Precision in radial normalization is important for interpretation of data for radius and conic estimation.
Test Results by Spatial Frequency

- Low spatial frequency error: largely trefoil
- Mid spatial frequency error: largely asphere stitching artifacts
- High spatial frequency error: largely asphere tooling marks
- Difference between SWFT and I-SWFT: largely spherical aberration
Concluding Remarks

- Initial tests of the JWST COCOA have been completed
- Results to date show good agreement with optical/mechanical models
- As built performance of the null meeting the wavefront error budget
- Testing in controlled ambient and vacuum environments is ongoing
 - Calibration methods for fusing SWFT and I-SWFT data will be refined using updated test results