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Abstract 
Characterization of biomass burning from space has been the subject of an extensive 
body of literature published over the last few decades. Given the importance of this topic, 
we review how satellite observations contribute toward improving the representation of 
biomass burning quantitatively in climate and air-quality modeling and assessment. 
Satellite observations related to biomass burning may be classified into five broad 
categories: (i) active fire location and energy release, (ii) burned areas and burn severity, 
(iii) smoke plume physical disposition, (iv) aerosol distribution and particle properties, 
and (v) trace gas concentrations. Each of these categories involves multiple parameters 
used in characterizing specific aspects of the biomass-burning phenomenon. Some of the 
parameters are merely qualitative, whereas others are quantitative, although all are 
essential for improving the scientific understanding of the overall distribution (both 
spatial and temporal) and impacts of biomass burning. Some of the qualitative satellite 
datasets, such as fire locations, aerosol index, and gas estimates have fairly long-term 
records. They date back as far as the 1970s, following the launches of the DMSP, 
Landsat, NOAA, and Nimbus series of earth observation satellites. Although there were 
additional satellite launches in the 1980s and 1990s, space-based retrieval of quantitative 
biomass burning data products began in earnest following the launch of Terra in 
December 1999. Starting in 2000, fire radiative power, aerosol optical thickness and 
particle properties over land, smoke plume injection height and profile, and essential 
trace gas concentrations at improved resolutions became available. The 2000s also saw a 
large list of other new satellite launches, including Aqua, Aura, Envisat, Parasol, and 
CALIPSO, carrying a host of sophisticated instruments providing high quality 
measurements of parameters related to biomass burning and other phenomena. These 
improved data products have enabled significant progress in the study of biomass burning 
from space. However, appreciable uncertainty remains in many of the measurements that 
still needs to be addressed. Nevertheless, climate and other atmospheric models are 
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making significant adjustments to take advantage of quantitative satellite measurements 
in studying biomass burning activity, emissions, and impacts. New research directions 
should include not only improvements in satellite retrievals and modeling accuracies, but 
also increased synergy between them, such that satellite measurements can be directly 
input into models without requiring elaborate interpretation. 
 

1 Introduction	
  
Biomass burning is a widespread phenomenon affecting most vegetated parts of the 

world seasonally, either in the form of wildfires ignited by accident or by natural causes 
such as lightning, or prescribed fires used for agricultural, ecological control or other 
similar purposes (e.g. Andreae, 1991; Carmona-Moreno et al., 2005; e.g. Morton et al., 
2008). Collectively, such large fires are among the fastest agents of terrestrial ecosystem 
change. Whereas prescribed fires are mainly intended for beneficial purposes, wildfires 
can have both direct and indirect adverse effects on human life and property, the 
environment (degradation, soil destabilization, and desertification), and water resources 
(soil moisture depletion and water pollution). They can also alter air circulation 
(convection and entrainment of smoke and subsequently soil particles), cloud formation 
and dissipation, and can effect Earth surface albedo changes. All of these have the 
potential to exert significant climate impacts that can trigger additional adverse responses 
and feedbacks (e.g. Cochrane, 2003; Shakesby and Doerr, 2006; Randerson et al., 2006; 
Bowman et al., 2009). Smoke emitted by fires is composed of aerosol particulate matter 
(PM) and numerous trace gases, including carbon monoxide (CO), carbon dioxide (CO2), 
methane (CH4), non-methane hydrocarbons, halogenated compounds, nitrogen oxides 
(NOx), and volatile organic compounds (VOCs), most of which are pollutants and 
contribute to the formation of new pollutants, such as tropospheric ozone (O3) and 
secondary aerosols. These PM and trace gases can have significant impacts, not only on 
air quality and health, but some (e.g. PM and the greenhouse gases, CO2 and CH4) also 
affect climate, with potential feedback on air quality. For instance, smoke PM can 
influence precipitation processes resulting in delayed, suppressed, or invigorated rainfall 
(e.g. Rosenfeld et al., 1999; Andreae et al., 2004; Koren et al., 2004), change cloud 
albedo, and scatter and absorb solar radiation, affecting atmospheric warming or cooling, 
and contributing to climate change. Conversely, expected climatic-changes, such as more 
severe drought conditions in some regions, are likely to result in more frequent and 
possibly more severe wildfire events. These complex and multi-faceted impacts of 
biomass burning can be better characterized and understood only through accurate, 
quantitative assessment of the spatial and temporal patterns in fuel consumption, heat 
budgets, and emissions (e.g. Radke et al. 2000, Clements et al. 2007, Kremens et al. 
2010). In particular, accurate estimation of smoke emission source strength from active 
fires is essential for modeling the smoke particulate and gaseous species fluxes, transport, 
atmospheric interactions, and impacts on air quality and climate.  

For several decades, researchers have made efforts to estimate burned biomass and 
smoke emissions from ground-based and in situ measurements, but the spatial and 
temporal coverage is severely limited (e.g. Crutzen and Andreae, 1990; Andreae and 
Merlet, 2001; Reid et al., 2005a,b). The rapid growth of satellite measurement capability 
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within the last couple of decades has provided the potential to overcome these space and 
time limitations by covering the entire globe frequently, over long periods of time. 
Henceforth, satellite data represent the primary source of information for mapping 
biomass-burning activity and evaluating smoke emissions at regional-to-global scales 
(e.g. Schultz et al., 2002; Freitas et al., 2005; Davies et al., 2009; Ichoku et al., 2008a; 
Kahn et al., 2008; Reid et al., 2009; Val Martin et al., 2010; van der Werf et al., 2010). 
However, satellite remote-sensing methods are faced with new challenges as they attempt 
to use instantaneous observational snapshots to address continuous and highly variable 
processes such as fires and their emissions. The result is that, although satellite can cover 
more ground, uncertainties in quantifying emissions still remain, and can in some 
respects be even greater, compared to the ground-based methods. 

The aim of this review is to assess the contributions satellite remote sensing make to 
the quantitative characterization of biomass burning for air quality and climate modeling 
applications. As biomass burning is a vastly interdisciplinary subject whose many aspects 
have been explored for decades by scholars from different perspectives, including by 
laboratory and field experimentation, modeling, ground-based, airborne, and satellite 
approaches, this paper cannot possibly provide an exhaustive review of the subject 
matter. Rather, we focus the discussion on the contributions from satellite, by way of 
cataloguing the significant satellite measurements that are directly relevant to the study of 
biomass burning and its impacts. We examine the current uncertainty levels of some of 
these satellite products, discuss their current or potential uses, and address some of the 
limitations and gaps that still exist in these satellite products. We also summarize their 
existing or potential synergy with modeling that does or could help improve scientific 
understanding of the biomass burning phenomenon and its impacts, quantitatively, at 
regional to global scales.  

Scientific understanding of biomass burning and its impacts requires a fundamental 
knowledge of three important aspects: (1) the types and spatio-temporal distributions of 
biomass burning events, (2) the different physical components of a biomass burning 
process, and (3) the products of biomass burning, their properties, and their trajectories. 
These three aspects are discussed in more detail in the subsections that follow, within this 
introduction. Section 2 describes the satellite observational constraints in measuring basic 
parameters related to biomass burning, including brief highlights of their current 
uncertainty levels and some of their relevant applications. Section 3 examines the three 
aspects of modeling that are most frequently used in biomass burning studies, namely: 
plume-rise, transport, and inverse modeling. Section 4 addresses the need for synergy 
between satellite measurements and modeling, through the unification of their hitherto 
disparate parameter systems, in order to make them more compatible and amenable to 
better comparison and possible integration. Section 5 completes the paper, with a brief 
conclusion and recommendations for future research aimed at enhancing the use of 
quantitative satellite data for improving biomass-burning parameterizations in the models 
used for climate and air-quality research and applications. 

 

1.1 Types	
  and	
  Distribution	
  of	
  biomass	
  burning	
  (emphasis	
  on	
  the	
  global	
  extent)	
  
Biomass burning encompasses the combustion of all types of organic material, 

particularly plants (living or dead), and includes the use of wood for domestic cooking or 
charcoal making, as well as open biomass burning in nature (e.g. Lacaux et al., 1994). 
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Since this review deals with the satellite contributions to climate modeling, it focuses on 
open biomass burning, which is observable from space, unlike domestic cooking and 
charcoal making that are typically performed at relatively smaller scales and under cover, 
and therefore not amenable to satellite observation. Open biomass burning varies widely 
in terms of ignition processes, size, intensity, spread rate, duration, seasonality, frequency 
of recurrence, and emission characteristics; depending on ecosystem type, location, 
prevailing weather, and fuel characteristics (e.g. physical composition and arrangement, 
density, degree of intrinsic dryness, and dampness due to precipitation or ambient 
humidity).  

The research community typically classifies biomass-burning regimes on the basis of 
broad ecosystem categories (Fig. 1) that include boreal forest, peat land, tropical forest, 
savanna/grassland, and agricultural fires (e.g. Andreae and Merlet, 2001; van der Werf, 
2010). However, ecosystem types are much more varied, having several levels of sub-
type nesting, and so are fire regimes, as the basic drivers of fire behavior and emission 
source strength are the fuel characteristics. Indeed, there can be significant differences 
between fire regimes of the same ecosystem type in different geographical locations. For 
instance, analysis of fire radiative energy (FRE) release rate or power (FRP) from the 
Moderate-resolution Imaging Spectro-radiometer (MODIS) instrument, which flies 
aboard the Terra and Aqua satellites, has shown that “boreal forest fires burn less 
intensely in Russia than in North America” (Wooster and Zhang, 2004). This suggests 
that Russian boreal fires typically burn less vigorously, consuming fuel and emitting 
smoke at a slower rate than their North American counterparts, fire-for-fire. Similar 
differences in mean FRP per MODIS fire pixel were also found between the tropical 
forests in Africa, Brazil, and Southeast Asia, as well as for other ecosystem types in 
different regions (Ichoku et al., 2008a). These differences are probably due to a 
combination of the factors identified above. 

 

1.2 Physical	
  components	
  of	
  biomass	
  burning	
  
The physical components of biomass burning include: the biomass fuel, the fire 

(represented by flame and other pyrolysis processes), the energy released (propagated by 
conduction, convection, radiation), and the smoke emissions (including aerosols and trace 
gases). Full characterization of biomass burning activity entails detailed, quantitative 
analysis of these individual components and their mutual interrelationships. 

As indicated in the previous subsection, fuel characteristics and environmental 
conditions drive fire behavior and emissions. Therefore, to predict these biomass burning 
processes accurately, it is necessary to understand fuel distribution and properties, such as 
whether they consist mainly of live or dead vegetation, leaves or stems, individually large 
or thin elements, and whether they are standing or lying down, sparsely or densely 
loaded, dry or humid. The presence or absence of flame determines the nature of the 
underlying pyrolysis process, which affects the rates of combustion, consumption of 
biomass, energy release, and emissions. The nature and rate of energy release, the first 
physical output from fires, reflects the combustion process and its potential direct impact, 
as well as the emission source characteristics. Emissions of particles and trace gases 
constitute the second main product of fires. Whereas the direct effects of the energy 
produced are limited to the immediate locality and duration of the fire, the direct effects 
of the emissions can be quite extensive in both space and time, depending on smoke 
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particle and gaseous composition, transport and atmospheric residence time (e.g. Damoah 
et al., 2004).  

1.3 Context	
  –	
  The	
  importance	
  of	
  biomass	
  burning	
  for	
  air	
  quality	
  and	
  climate	
  
A third fundamental aspect of biomass burning is the generation and trajectory of the 

energy and smoke produced. Biomass burning processes release tremendous amounts of 
heat energy, which is propagated in the form of conduction, convection, or radiation. 
These different components exert influences that can affect air quality and climate 
indirectly. Whereas the heat of combustion removes the vegetative cover and produces 
particles, water vapor, and other gases, the part of the heat conducted to the ground can 
enhance surface evaporation, thereby drying out the soil. The drying and burning change 
the surface albedo, which has climate implications. The altered surface also lends itself 
more easily to wind generation of airborne ash and dust, which affects both air quality 
and climate. The convective energy, in the form of latent and sensible heat, provides the 
transport mechanism for injecting both the trace gases (including water vapor) and 
aerosols into different levels of the atmosphere, where they can affect both the air quality 
and climate to varying degrees, depending on their composition and atmospheric 
residency times. The radiative energy from biomass burning contributes to the long-wave 
surface radiation that affects the terrestrial heat budget and eventually climate, although 
the significance of this contribution is yet to be investigated. 

Smoke from biomass burning is composed of aerosol particulate matter (PM) and a 
wide variety of trace gases (e.g. Andreae and Merlet, 2001). Different smoke constituents 
have different degrees of relevance to air quality and/or climate, depending on their 
spatial and temporal distribution and their physical, chemical, and/or optical 
characteristics. To evaluate smoke climate impacts, the general aspects of both aerosol 
and trace gases considered are their atmospheric loading, vertical distribution, and 
lifetime. In other words, for a given smoke constituent and location, the denser it is 
within the volume it occupies and the longer it lasts in that volume the more its potential 
climate impacts. Aerosols typically have a lifetime of about one week in the atmosphere 
depending on how high they are injected into the atmosphere, whereas trace gases have a 
wide range of lifetimes going from a few hours to hundreds of years depending on the 
species. For instance, nitric oxide (NO) and nitrogen dioxide (NO2) last a few hours to a 
day, carbon monoxide (CO) a few weeks, carbon dioxide (CO2) ~100 years, and nitrous 
oxide (N2O) even longer. The unique characteristics of smoke aerosol PM considered 
most critical for climate are the physical composition and associated optical (scattering 
and absorption) properties. Smoke PM includes mainly organic carbon (OC) and black 
carbon (BC), with numerous other PM species emitted in relatively smaller amounts. 
Overall, it is estimated that biomass burning contributes about 34% – 38% of global total 
carbonaceous aerosol emissions, while the rest is from fossil fuel burning (e.g. Forster et 
al., 2007). Although OC concentrations in biomass burning smoke emissions are typically 
5 to 10 times larger than BC concentrations, BC is by far more absorbing than OC. 
Indeed, it has been reported that global mean radiative forcing by BC is up to 55% that of 
CO2, and larger than that of any other greenhouse gases (Ramanathan and Carmichael, 
2008). That and other studies also suggest that BC deposition can darken snow and ice 
surfaces, contributing to melting, in particular of mountain glaciers and Arctic sea ice 
(e.g. Hansen and Nazarenko, 2004), and that 40% of global BC loading can be attributed 
to open biomass burning alone. The unique relevance of trace gases to climate depends 



 6	
  

on their greenhouse gas properties, which is related to their optical properties. For 
example, CO has practically no greenhouse effect, and is therefore much less important 
for climate than CO2, CH4, and N2O whose greenhouse effects are large. It is estimated 
that land-use changes due to deforestation and associated biomass burning accounts for 
about 25% of the total global CO2 increases since pre-industrial times (e.g. Forster et al., 
2007).  

With regard to air quality, the relevance of all smoke constituents is associated with 
their abundance and spatio-temporal distribution close to human populations. In other 
words for a given smoke constituent, the more concentrated it is and the closer it is to the 
ground in densely populated areas and the longer it remains in such locations, the greater 
the potential for human exposure and adverse effects on air quality. Specifically, under 
the US Clean Air Act (http://www.epa.gov/air/criteria.html) that was last amended in 
1990, the US Environmental Protection Agency (EPA, 2005) was required to set National 
Ambient Air Quality Standards (NAAQS, 40 CFR part 50) for six pollutants considered 
harmful to public health and the environment, identified as ‘criteria pollutants’ (e.g. 
Koren, 1995), namely: Particulate Matter (PM), Carbon Monoxide (CO), Nitrogen 
Oxides (NO and NO2, commonly referred as NOx), Sulfur Dioxide (SO2), Ozone (O3), 
and Lead (Pb). Essentially, emissions from biomass fires contribute significantly to five 
of these six pollutants, as the first four (i.e. PM, CO, NOx, and SO2) are directly emitted 
by the fires, and O3 is produced through a sunlight-induced chemical reaction between 
NOx and volatile organic compounds (VOCs), that themselves are also emitted by fires. 

Consideration of PM effects on air quality is based on its physical characteristics, 
particularly size. Depending on fire type, smoke PM, like most atmospheric aerosol 
particles, falls within the size range of PM10 (particles having aerodynamic diameter <10 
µm), of which the dominant proportion falls within the PM2.5 (particles with 
aerodynamic diameter <2.5 µm). The fine (PM2.5) aerosol category is of greater concern 
for air quality than the coarse (PM10 - PM2.5) fraction because the smaller particles are 
able to penetrate human lungs, where they can contribute to cardiovascular and 
respiratory diseases. Although PM2.5 constitutes a significant proportion of most aerosol 
types, including the naturally occurring categories such as wind-blown dust and ocean-
spray generated sea salt aerosols, as well as anthropogenic pollution from 
urban/industrial/transportation and other human activities, the smoke contribution is 
particularly important because it is frequently emitted from vegetated land surfaces where 
people live, as opposed to uninhabited desert or ocean regions; this is especially true of 
agricultural fires. Furthermore, because of the unpredictable character of natural fire 
occurrence, smoke is more likely to diminish air quality unexpectedly, unlike emissions 
from regular human activities, which generally have a predictable rhythm. 

The unique relevance of individual fire-emitted trace gas species to air quality does 
not necessarily depend on their relative abundance. For instance, although CO2 is emitted 
in much higher proportions than CO (about 15:1 for many types of fires, e.g. Andreae and 
Merlet, 2001), the latter is probably the more critical for air quality because, even though 
CO from fire is generally lower than the typical pollution standard, it is important as a 
marker for pollution and is also an ozone precursor (e.g. Pfister et al., 2008). Also, NOx 
and SO2 are emitted from fires in even smaller quantities, typically much lower than 
harmful pollution levels, but are important precursors for ozone and sulfates, 
respectively.  
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Essential inputs required by models for accurate air-quality monitoring and 
forecasting can be derived from satellite measurements, which can 
complement/supplement the surface-based measurements where these exist and represent 
the only source of air-quality data where they do not (e.g. Al-Saadi et al., 2005; Grell et 
al., 2005; Byun and Schere, 2006; Hoff and Christopher, 2009; van Donkelaar et al., 
2010). 

2 Satellite	
  Observational	
  Constraints	
  
Some of the variables associated with biomass burning have been observed from 

space in one form or another since the beginning of the satellite earth observation era in 
the 1970s. This period saw the launches of the first Landsat in 1972, the first Advanced 
Very High Resolution Radiometer (AVHRR) aboard the TIROS-N satellite in 1978, and 
the first Total Ozone Mapping Spectrometer (TOMS) aboard the Nimbus 7 satellite in 
1978. The Landsat satellite series, as well as the AVHRR and TOMS sensor series and 
many other earth observation satellite sensors launched in subsequent years and into the 
new Millennium, have enabled great progress in the observation of different climate 
relevant parameters, including those related to biomass burning, both on the earth’s 
surface and in the atmosphere. Table 1 presents a list of some key variables, and Table 2 
shows those observed by different satellite sensors, listed in order of satellite launch date. 
In cases where a series of similar satellites is involved, only the launch date of the first 
one is shown. The satellite and sensor acronyms and their full names, preceded by those 
of the Agencies operating them, are listed in Table 3. The acquired observations have 
varying degrees of quantitative importance, and fall under different product categories 
that will be discussed in the following subsections. The satellite-derived variables are 
listed individually along with their observing sensor/satellite identities, data 
characteristics, and relevant references for fires and smoke, respectively, in Tables 4a and 
4b. 

2.1 Active	
  Fire	
  Detection	
  
Although the Defense Meteorological Satellite Program (DMSP) spaceborne systems 

became operational in the 1960s, and their satellite imagery declassified in December 
1972, their utility for active fire detection was not exploited by the scientific community 
until much later (e.g. Cahoon et al., 1992a). The breakthrough in fire detection from 
space came after the 1978 launch of the first AVHRR, when algorithms were developed 
to measure surface radiant temperature fields at sub-pixel resolutions (e.g. Dozier, 1981; 
Matson and Dozier, 1981). With successive launches of the AVHRR series of sensors in 
the later part of the 1980s, that initial effort evolved into targeted fire detection from 
satellite (e.g. Malingreau et al., 1985; Muirhead and Cracknell, 1984; Flannigan and 
Vonder Haar, 1986; Matson and Holben, 1987). The 1990s saw increased activity in 
satellite fire remote sensing, not only from AVHRR (at 1-km nominal spatial resolution 
at nadir), but also from other similar polar orbiting satellite sensors such as the ATSR 
(Arino and Melinotte, 1995), as well as geostationary satellite sensors such as the GOES 
VAS (and later the IMG) series, whose observations are acquired at 4-km nominal spatial 
resolution at the sub-satellite point (e.g. Kaufman et al., 1990;	
  Malingreau, 1990; Lee and 
Tag, 1990; Setzer and Pereira 1991; Prins and Menzel, 1992; Justice et al., 1993; 
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Langaas, 1993; Kennedy et al., 1994; Eva and Flasse, 1996; Flasse and Ceccato, 1996; 
Justice et al., 1996; Scholes et al. 1996; Randriambelo et al., 1998; Giglio et al., 1999). 
With the launch of Terra in December 1999 came higher-spatial-resolution fire detection 
capability with the Advanced Spaceborne Thermal Emission and Reflection Radiometer 
(ASTER at 30 m), as well as much improved radiometric stability, combined with 1-km 
spatial resolution (similar to that of AVHRR) from MODIS (e.g. Kaufman et al., 1998a, 
2003; Giglio et al., 2000, 2003a,b, 2008; Giglio and Kendall, 2001; Justice et al., 2002; 
Giglio, 2007). This improvement in satellite fire detection capability was further 
reinforced with the launch of a second MODIS sensor in 2002 aboard the Aqua satellite. 
Since the nominal equator crossing times of Terra are 10:30 am and 10:30 pm, whereas 
those of Aqua are 1:30 am and 1:30 pm, the twin MODIS sensors can observe fires 
globally everywhere on average four times daily; once in the daytime and once at 
nighttime from each sensor. Several other sensors providing fire detection from polar or 
geostationary orbits were also launched during the late 1990s and into the 2000s, up to 
the launch of the Visible Infrared Imager Radiometer Suite (VIIRS) aboard the NPP 
polar-orbiting satellite in October 2011. Some of these sensors are still operational; 
details are provided in Tables 2 to 4. 

Accurate identification and detection of active fires from satellite is of primary 
importance in the assessment of satellite contributions to the quantitative characterization 
of biomass burning, because it is important to determine: (i) what fraction of actively 
burning fires at satellite overpass time are actually detected, and (ii) what fraction of 
satellite detections are actual fires, as opposed to artifacts. Several studies conducted 
mostly during the last decade have been dedicated to addressing these complementary 
questions (e.g. Li et al., 2001, 2003; Ichoku et al., 2003a; Stolle et al., 2004; Morisette et 
al., 2005a,b; Schroeder et al., 2005, 2008a,b,c; Csiszar et al., 2006; Mota et al., 2006; 
Csiszar and Schroeder 2008; Calle et al., 2009). The methodology employed in those 
studies typically involves comparing the satellite active fire detections at a given spatial 
resolution against those acquired from satellite or airborne sensors at higher resolution, or 
matching reported detections against burn scars or burned areas mapped using ground-
based, airborne, or space-based methods.  

Typically, such studies quantify the non-detection of existing fires in terms of 
‘omission’ errors, and the reporting of a fire where there is none as ‘commission’ errors. 
Omission errors are attributable to several factors, including limitations due to physical 
fire size relative to the satellite sensor footprint and/or the fire temperature differential 
with that of the background, as well as fire obscuration by clouds, thick smoke, 
topographic relief or other tall features, and even large vegetation canopy camouflaging 
of understory fires. Commission errors can occur from signal enhancement in the fire 
channels due to sun glint, hot bare surfaces, certain types of clouds, and other discrete 
and unique hot features.  

As commission errors originate from special circumstances, occur infrequently, and 
have a much lower impact on fire characterization than omission errors, we focus our 
accuracy discussion to omission errors. Even the discussion of omission errors alone is 
quite complex, as apart from the question of detecting fires during the time of satellite 
overpass, there are also larger questions regarding the fire sampling times and frequency 
relative to overall fire diurnal and annual occurrence patterns in different regions (e.g. 
Giglio, 2007).  Some of the fire-detection uncertainty analyses studies cited above, 
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particularly those based on matching active fire pixels against cumulative burned areas, 
encompass the omissions of fires that are not active during the satellite overpass as well, 
and therefore provide an unrealistic measure of satellite performance. The fire-detection 
uncertainty analysis in this paper focuses on studies that compare satellite products with 
near-coincident higher-resolution observations, either from satellite or airborne 
measurements. Incidentally, it is difficult to adopt a single absolute value of omission 
error threshold for different sensors having substantially different footprint sizes, as the 
major limiting factor in fire detection is the ratio of fire size to footprint size. For 
instance, in a number of recent studies, ASTER and/or Landsat ETM+ fire detections at 
30-m nominal spatial resolution were used to validate MODIS fire detections at 1-km 
nominal spatial resolution, which contains approximately 1100 30-m pixels. The 
probabilities of omission were found to be in the ranges of 80%-90%, 20%-40%, or 5%-
10% when the minimum number of 30-m pixels required within a MODIS pixel for the 
latter to be validated as a true fire pixel were set as 1, 50, or 100, respectively  (e.g. 
Morisette et al., 2005a,b; Schroeder et al., 2008b,c). Similar validation of GOES 
geostationary fire detection at 4-km nominal spatial resolution showed that, although its 
nominal pixel area is 16 times that of MODIS (at 1-km resolution), these omission 
probabilities are produced with thresholds set to four times the respective minimum 
number of 30-m pixels used for MODIS (Schroeder et al., 2008b). Therefore, depending 
on their footprint size, satellite observations at 1-km resolution or larger tend to miss 
quite a substantial number (>80%) of relatively small-size fires (a few tens of meters in 
size), unless there is a high concentration (>50) of such small fires within the satellite 
footprint, whereupon they detect >50% of the fires. Detection capability increases with 
fire size relative to satellite footprint, but not necessarily in a linear fashion. 

There are also other issues related to satellite fire detection. Cloud obscuration has 
long been recognized as a persistent problem unrelated to the fire detection algorithm 
adopted (e.g. Kaufman et al., 1998a). This problem is either ignored when working with 
satellite fire detections or compensated for on the basis of certain assumptions about fire 
and cloud distributions. Typically, the observed fires are weighted by cloud fraction in 
such a way as to account for potentially obscured ones, under the assumption that clouds 
have no effect on fire occurrence, and that in a given region, fire distribution in cloud-
free areas is similar to that of cloud-covered areas (e.g. Roberts et al., 2005). The 
accuracy of this assumption is uncertain. However, Schroeder et al. (2008a) investigated 
the cloud obscuration problem in detail for the Brazilian Amazon region using a pixel-
based probabilistic approach, together with information about ‘previous fire occurrence, 
precipitation, and land use’, and found that cloud adjustment reproduced the number of 
potential fires missed within ‘1.5% and 5% of the true fire counts on annual and monthly 
bases, respectively’	
  (Schroeder et al., 2008a). Another major issue in fire omission relates 
to the frequency of satellite fire sampling. This is more of an issue for polar orbiting 
satellites that can observe fires no more than twice per day, than it is for geostationary 
satellites, whose sensors can observe fires at least twice an hour in the regions they cover. 
Current efforts are geared toward an amalgamation of the polar-orbiting and 
geostationary observations to derive the maximum benefit of spatio-temporal coverage 
and detection accuracy (e.g. Freeborn et al., 2009; Reid et al., 2009). 

Although active fire detection enables the identification of their geographic location, 
which is fundamental and important for mapping the fire distribution, it takes much more 
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than fire location to improve our understanding of the overall fire activity and impacts 
(e.g. Schroeder et al., 2009). To accomplish such studies with any degree of rigor, it is 
also important to establish the burn characteristics that can lead to quantitative estimates 
of burned biomass and smoke emissions.  

	
  

2.2 Fuel	
  Type,	
  Fuel	
  Load,	
  and	
  Burned	
  Area	
  Mapping	
  	
  
Fuel is the basic raw material for biomass burning, and knowledge of fuel 

characteristics and consumption by fires can provide insight into the carbon emission 
parameters relevant for climate studies. Fuels consumed during open biomass burning 
consist of organic materials, most of which are plants of various sizes and structures, and 
are often broadly differentiated based on the dominant vegetation types, such as 
grassland, brush, woodland, forest, agricultural residues, peat, and others (Fig. 1). 
However, for detailed characterization, fuel types are classified in terms of the sizes, 
shapes, physical disposition (i.e. whether they are above, on, or below ground), and state 
(i.e. live or dead) of the various plant elements: grass, leaves, foliage, twigs, stems, fine 
leaf litter, coarse woody debris, organic soil layer, peat, etc. (e.g. Burgan et al., 1998; van 
der Werf et al., 2006). Traditionally, fuel type and fuel load are characterized by ground-
based sampling, sometimes beneath plant canopies, in order to document and quantify 
these elements as accurately as may be necessary to obtain good estimates of fuel carbon 
content before and after fires (e.g. Ottmar et al., 2007). Such detailed fuel 
characterization is currently not feasible from satellite, but ground-based and airborne 
(e.g. Saatchi et al., 2007) approaches can complement broad categorizations of land-
cover types from satellite to estimate fuel loads over large areas for fire behavior studies 
and emissions calculations. 

Over the last several decades, substantial scientific efforts have been devoted to 
estimating biomass-burning carbon emissions, mostly by the use of models. 
Traditionally, the amount of fire-emitted carbonaceous aerosol or trace gas species of 
interest is derived as follows (e.g. Lavoue et al., 2000; Andreae and Merlet, 2001): 

biomassxx MEFM *=         (1) 

where xM  is the mass of the emitted species x, xEF  is its emission factor, and biomassM  is 
the mass of the dry biomass burned, which can be estimated as follows (Seiler and 
Crutzen, 1980): 

βα ×××= BAMbiomass        (2) 

where A is the burned area, B is the biomass density, 

€ 

α  is the fraction of aboveground 
biomass, and 

€ 

β is the burn efficiency or combustion completeness. The definition and 
application of  presumes that biomass below ground does not burn, although more 
recent research has revealed that fires can burn deep into the ground under certain 
conditions, such as for peat in the Arctic/sub-Arctic regions (e.g. Nichol, 1994; Soja et 
al., 2004; Mack et al., 2011). Burned area A can be directly measured from satellite to 
different degrees of accuracy and precision, depending on several factors, particularly the 
sensor spatial resolution, because the coarser the resolution the smaller the fraction of the 
actual subpixel burned area within individual pixels (e.g. Barbosa et al., 1999a; Roy et 

! 

"
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al., 2002). A number of satellite-derived global burned area products currently exist, 
including the Global Burnt Area product from SPOT/VEGETATION (Grégoire et al., 
2003; Tansey et al., 2004, 2008), the GLOBSCAR product from the ATSR-2 sensor on 
the ERS-2 satellite (e.g. Simon et al., 2004), and MODIS Level 3 gridded Burned Area 
Product (MCD45A1) (e.g. Roy et al., 2008a). In addition, there have been various 
research burned area products derived from single or multiple sensor data for targeted 
applications (e.g. Fraser et al., 2000; Smith et al., 2002; Zhang et al., 2003; Li et al., 
2004; Giglio et al. 2006; Zhang and Kondragunta, 2008; Soja et al., 2009). 

Accuracy of burned area products is extremely important in determining the burned 
biomass. However, although the satellite remote-sensing approach provides the most 
practical way to produce sustained burned-area mapping, particularly for very large or 
extended regions, achievable accuracy is determined by several factors, including the 
sensor pixel size relative to the actual size of the burned area, as well as land-cover and 
soil-type differences (e.g. Miettinen et al., 2009). Inter-comparison between different 
burned area products revealed very large disagreements in different regions. For instance, 
Tansey et al. (2004) reported one example for the Brazilian forest in which, ‘compared to 
the GLOBSCAR product that reported 4333 km2 of forest burned, the GBA-2000 product 
reported only 846 km2, 80% less’; although this disagreement cannot be attributed to 
pixel size differences. However, more detailed validation of satellite-derived burned-area 
products have been conducted in various regions, usually based on burned areas derived 
from higher-resolution images, with varying results. Fraser et al. (2004) used Landsat 
TM-derived burned area maps at 30-m spatial resolution to validate those of AVHRR and 
SPOT/VGT for Canada and found that ‘VGT burned areas were, on average, 72% larger 
than crown fire burned areas mapped using Landsat TM’. On the other hand Zhang et al. 
(2003) performed similar studies in the Russian Federation and found VGT to 
underestimate burned areas by about 17.6% relative to Landsat ETM+. These contrasting 
results may be due to differences in algorithm assumptions in mapping burned areas both 
from the VGT and Landsat data, and represents a major concern for the user community, 
such as emissions modelers. 

In contrast to burned area A, the other three variables in equation (2) are currently not 
directly measureable from satellite. Instead, they are typically estimated by modeling and 
other indirect approaches, often based on the use of fuel-load inventories from ground-
based measurements and other compilations (e.g. Hao and Liu, 1994; Hoelzeman et al., 
2004; Ito and Penner, 2004; Kasischke and Penner, 2004; Palacios-Orueta et al., 2004). 
For instance, Barbosa et al. (1999b) estimated biomass density B by correlating literature 
values with accumulated normalized difference vegetation index (NDVI) as derived from 
AVHRR data. Luckman et al. (1998) employed a semi-empirical technique using 
spaceborne synthetic aperture radar (SAR) imagery, together with other data and model 
fitting, to estimate the aboveground biomass density (corresponding to 

€ 

B × α  in Eq. (2)). 
Also, there have been some efforts to use Multi-angle Imaging Spectro-Radiometer 
(MISR) observations to estimate aboveground woody biomass (e.g. Chopping et al., 
2008). As regards burn efficiency 

€ 

β, De Santis et al. (2010) improved 

€ 

β values obtained 
by traditional methods, using burn severity estimates from Landsat data, as reported in 
the literature by different authors (e.g. Van Wagtendonk et al., 2004; Epting et al., 2005; 
Miller et al., 2007; French et al., 2008; Verbyla et al., 2008; De Santis et al., 2010).  
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Although the burned-area and related products represented in Eq. (2) are valuable for 
estimating total emissions, key satellite data needed to apply this approach can be 
obtained only several days to weeks after a fire is over. Therefore, they are utilized for 
developing emissions inventories, which are used for climate modeling, but do not meet 
the near-real-time application needs of air-quality management and forecasting. 
However, as demonstrated in a number of recent publications, near-real-time emissions 
can be derived from satellite measurements of FRP (e.g. Ichoku and Kaufman, 2005; 
Jordan et al., 2008) and perhaps also other quantitative measurements, such as sub-pixel 
instantaneous active fire area and temperature (e.g. Zhang et al., 2008; Reid et al., 2009). 

2.3 Fire	
  Radiative	
  Power	
  and	
  other	
  Quantitative	
  Measurements	
  of	
  Fire	
  
Energetics	
  	
  

The high temperatures associated with actively burning fires result in a sharp increase 
in the middle infrared (MIR) emitted radiance compared to the background. This enables 
space-borne sensors with MIR channels in the atmospheric window near the 4-µm 
wavelength to detect fires occupying only a small fraction of their nominal pixel areas, 
but can also cause these channels to saturate. Thus, most heritage satellite sensors simply 
identified fire locations without providing any quantitative information, causing most 
satellite-based scientific analysis and modeling studies of biomass burning to rely on fire 
pixel counts or burned area estimates, neither of which has direct, quantitative 
information related to heat release, biomass consumption, or smoke emission. MODIS 
was the first satellite-borne sensor capable of measuring FRP, which is the fire radiative 
energy (FRE) release rate (e.g. Kaufman et al., 1998a; Justice et al., 2002; Giglio et al., 
2003a, Ichoku et al., 2008, see also Fig. 2). Subsequently, FRP is being derived from a 
few other satellite sensors, including the Meteosat-SEVIRI and GOES Imager 
geostationary systems (e.g., Wooster et al., 2003; Roberts et al., 2005; Xu et al., 2010; 
Table 4a). Because of the discrete nature of remote sensing data acquisition, only 
instantaneous power (FRP) can be measured directly from satellite, and if measured over 
the same fire at a suitable temporal frequency, energy (FRE) can be derived by 
integrating successive FRP measurements over a given time period. Although satellite 
FRP has never been validated nor related directly to physical factors typically used to 
assess fire behavior quantitatively, such as fuel load and fuel-bed structure, actual sub-
pixel fire area, flaming/smoldering phases, latent and sensible (convective) heat fluxes, or 
combustion completeness, it is increasingly being used to estimate burned biomass and 
smoke emissions, as well as for related scientific research (e.g. Wooster, 2002; Ichoku 
and Kaufman, 2005; Roberts et al., 2005; Wooster et al., 2005; Freeborn et al., 2008; 
Jordan et al., 2008; Pereira et al., 2009; Vermote et al., 2009). For instance, using satellite 
measurements of FRP and aerosols, coupled with meteorological wind fields, Ichoku and 
Kaufman (2005) demonstrated a direct linear relationship between FRP and smoke-
aerosol or particulate matter (PM) emission rates for various regions of the world. 
However, as will be discussed in section 3.1, there are a number of issues yet to be 
resolved in interpreting FRP, such as unknown fire emissivity, degree of atmospheric 
opacity at 4 microns, and the effects of partially filled pixels and observation scan angle. 

Other quantitative measures of active fires, currently derivable from satellite 
measurements and applicable in near real-time, are the instantaneous sub-pixel fire area 
and temperature (e.g. Prins and Menzel, 1992; Giglio and Kendall, 2001), which 
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incidentally can be used together to derive FRP (e.g. Wooster et al., 2003). Sub-pixel fire 
area and temperature are typically jointly derived, based on the difference in the response 
of a mid-infrared (MIR, typically around 4 µm) and a thermal infrared (TIR, typically 
around 11 µm) channel to emitted infrared spectral radiance from fires, by using the bi-
spectral method developed by Dozier (1981). This method assumes that a fire pixel is 
composed of two thermal components (‘fire’ and non-fire ‘background’), and by solving 
two simultaneous equations with two unknowns the sub-pixel fire area and temperature 
can be estimated. Although these measures provide more quantitative information on the 
sub-pixel fire activity than simple fire pixel counts, there are also uncertainties associated 
with them. First, when fires are undetected as described above, the inherent error of 
omission introduces uncertainty, and the ability to derive quantitative measures of the 
fires is inconsequential. Even, when the fires are detected, many of the fire sensing 
instruments’ fire channels are easily saturated when the brightness temperature of the fire 
pixel exceeds the intensity tolerance of the detector measuring it. This saturation 
invariably results in significant uncertainty in the derived values of sub-pixel fire area, 
temperature, or FRP. In addition, vegetation fire scenes typically consist of multiple 
thermal components with a wide range of temperatures, from hot flaming to cooler 
smoldering components, making the assumption of a unique fire temperature unrealistic.  

Indeed, Giglio and Kendall (2001) analyzed Dozier’s (1981) method in detail and 
found it to have significant intrinsic uncertainty, which they summarized as follows: ‘The 
results of a sensitivity analysis indicate that under realistic conditions the random errors 
in fire temperature and area retrieved using Dozier’s method are ± 100 K and ± 50% at 
one standard deviation, respectively, for fires occupying a pixel fraction greater than 
0.005 (this corresponds to a 5000-m2 fire within a 1-km pixel)’. They also noted that ‘for 
smaller active fires, larger random and systematic errors are likely to occur’ (Giglio and 
Kendall, 2001, p. 34). One of the most likely sources of uncertainty in the bi-spectral 
method could be the inter-channel pixel mis-registration or differences in point spread 
function (PSF) between the two spectral channels used (e.g. Wooster et al., 2005). 
Zhukov et al. (2006) suggested processing pixel clusters, rather than individual pixels, as 
a way to mitigate these sources of uncertainty.  

FRP uncertainties have also been specifically investigated by several authors (e.g. 
Wooster et al., 2003, 2005; Roberts and Wooster et al., 2005; Schroeder et al., 2010; Xu 
et al., 2010). Analysis of fires observed over the Brazilian Amazon show the lower 
detection limit to be 11 and 9 MW for MODIS on Terra (morning) and Aqua (afternoon) 
satellites, respectively, whereas the equivalent detection limits for retrievals by the WF-
ABBA algorithm are 27 and 19 MW for GOES observations coincident with Terra and 
Aqua overpass times, respectively (Schroeder et al., 2010). Similar analysis of GOES 
data across the Americas (North, Central, and South) reveals that the minimum detection 
limit for both GOES East and West is ~30 MW (Xu et al., 2010). The foregoing two 
studies conducted about the same time are in general agreement. Overall, because of the 
omission of smaller fires, it has been estimated that Geostationary - Meteosat-SEVIRI 
and GOES - sensors (at 3-4 km nominal spatial resolution) underestimate MODIS (at 1 
km nominal spatial resolution) in regional total FRP by 40-50% (e.g. Roberts and 
Wooster, 2008; Xu et al., 2010). In turn, MODIS was found to underestimate FRP by up 
to 46% compared to the Bi-spectral InfraRed Detection (BIRD) small satellite	
  Hot Spot 
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Recognition System (HSRS) sensor (at 0.37-km nominal spatial resolution), based on a 
relatively few cases examined (Wooster et al., 2003).  

Therefore, although space-based quantitative measures of active fires, such as FRP, 
allow the categorization of the relative sizes/intensities of the fires (e.g. Ichoku et al., 
2008a), which have the potential to improve the accuracy of fire activity and emissions 
characterization, these quantitative measures still appear to suffer from significant 
uncertainty, almost certainly in the direction of underestimation. This is due to the 
massive omission (both in space and time) of fires that are: (i) too small relative to the 
satellite-sensor footprint, (ii) active only between satellite overpasses or measurements, 
or (iii) obstructed from satellite sensor view by clouds, thick smoke, large tree canopies, 
mountains, or other large features. In essence, the overriding uncertainty issue with fire 
observation from space is underestimation. 

2.4 Smoke	
  Plume	
  height	
  mapping	
  and	
  Vertical	
  Profiling	
  
An important factor in determining the impact of smoke on air-quality and climate is 

its vertical distribution. Smoke affects air quality mainly when it is near the surface, 
where populations can be directly exposed, whereas elevated smoke is likely to spread 
farther from its source and remain in the atmosphere longer, increasing its environmental 
impact. Smoke plume heights are successfully being characterized from space using two 
main techniques: stereo analysis of overlapping imagery from passive remote sensing, 
and analysis of Lidar return signals from active remote sensors.  

Passive remote sensing stereo mapping of plume height is being conducted mainly 
from Multi-angle Imaging Spectro-Radiometer (MISR) observations. The multi-angle 
measurement capability of MISR allows the determination of heights of various types of 
targets (e.g. clouds and aerosols) that have features visible in multiple images acquired 
from different view angles, and to include a wind correction for proper cloud motion 
between views (e.g. Moroney, et al., 2002; Muller et al., 2002; Kahn, et al., 2007). The 
stereo-matching algorithm is based on identifying similar spatial patterns of radiance 
contrast. The resulting height distributions are retrieved with an accuracy of 0.2 – 0.5 km 
and reported at 1.1 km horizontal resolution, which when plotted as histograms, tend to 
produce pseudo-profiles of plume vertical distribution in the vicinity of aerosol sources 
(e.g. Kahn, et al., 2007, 2008). This technique has been adapted specifically for the 
retrieval of the near-source smoke plume injection heights, and implemented as the MISR 
INteractive eXplorer (MINX) Software (Nelson, et al., 2008). MINX is an interactive tool 
that allows the user to specify the region over which stereo-matched heights are to be 
derived by digitizing the visible boundaries of the plumes and indicating the wind 
direction, whereupon the program performs the stereo matching and maps out the plume 
heights and wind vectors. Various studies have been conducted in different regions of the 
world using smoke plume-height data retrieved with MINX (e.g. Kahn et al., 2008; Val 
Martin et al., 2010; Mims et al., 2009; Tosca et al., 2011). Some of the main findings thus 
far include the following: 
- Smoke plumes are not always injected into the near-surface atmospheric boundary 

layer, nor are they uniformly distributed vertically up to a peak altitude, as is 
sometimes assumed in modeling; rather, when sources are sufficiently buoyant relative 
to the near-surface atmospheric stability structure, smoke tends to concentrate in 
discrete layers of local atmospheric stability above the boundary layer (Kahn et al., 
2007, 2008). Furthermore, based on initial analysis of MISR-derived plume heights in 
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the Alaska-Yukon region during summer 2004, it was found that about 10% of wildfire 
smoke plumes reached the free troposphere. 

- Based on the analysis of plume heights observed across North America from 2002 to 
2007 (except 2003), it was deduced that plume heights are highly variable, ranging 
from a few hundred meters up to 5000 m at 11:00–14:00 local time. Statistically, the 
largest plumes are found over the boreal region with a median height of ∼850 m, 
whereas the smallest plumes are found over cropland and grassland fires in the 
contiguous US, with a median height of ∼530 m. A significant fraction (4–12%) of 
plumes are injected above the planetary boundary layer (PBL), and most (>83%) of 
those plumes located above the PBL are trapped within layers of relative atmospheric 
stability (Val Martin et al., 2010). 

- Studies of plumes from grassland fires in the arid regions of western and central 
Australia, based on the MISR Standard Stereo height product as well as MINX data 
analysis, showed that most of the plumes studied stayed within the PBL, as expected, 
but a few of the cases studied actually rose above it, and some of those concentrated in 
higher layers of relative atmospheric stability above the boundary layer (Mims, et al., 
2009). 

-  Studies of plumes from anthropogenic fires in tropical forests and peatlands of 
equatorial Asia (Borneo and Sumatra), also based on MINX data analysis, showed that 
mean MISR-derived plume heights were about 700 m on Borneo and 750 m on 
Sumatra during 2001–2009, with nearly all plumes confined to within 500 m of the 
atmospheric boundary layer. 

Active remote sensing of smoke plumes is based on the analysis of Lidar return signal 
time sequences. The space-based lidar technique has been applied to smoke plumes 
mainly from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations 
(CALIPSO) spacecraft using the Cloud-Aerosol Lidar with Orthogonal Polarization 
(CALIOP) dual-wavelength (532 and 1064 nm) observations, which has a very narrow, 
single-pixel swath (~100 m) that provides a curtain of vertical profiles beneath the orbital 
track (Winker, et al., 2007, 2010). As a result, it rarely observes the actual smoke 
injection process directly, but the technique is sensitive enough to profile thin aerosol 
layers downwind, where the plume has dissipated and is more widespread, making it a 
much bigger target. The uncertainty of lidar plume height retrieval is better than that of 
the passive method because of the precise nature of active remote sensing, although low 
signal-to-noise is a limiting factor for CALIOP, especially for daytime observations, 
mainly because of its large distance from the atmosphere as a satellite lidar (Winker, et 
al., 2010). Comparative case studies of CALIOP aerosol measurements relative to those 
of a ground-based Raman lidar showed an agreement in the aerosol layer top height to 
within ±0.1 km, and also found that	
  CALIOP is capable of detecting ‘aerosol at least up 
to ~0.3 km from ground in cloud-free conditions’ (Perrone et al., 2011, p.438). Analysis 
of CALIOP profiles of smoke aerosol layers in several regions of the world over a two-
month (July-August) period in 2006 indicated that in the tropical regions the smoke is 
generally within the PBL, whereas in the higher latitudes a small but significant 
proportion is above the PBL, although “cases with pyro-convection and/or direct 
injection to the free troposphere are not frequent” (Labonne et al., 2007). A similar study 
focused on agricultural burning in SW Russia and Eastern Europe during the 2006 – 2008 
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fire season showed that almost 50% of the emitted smoke plumes were located above the 
PBL (Amiridis et al., 2010). 

The two types of satellite measurement approaches (active and passive) are 
complementary, and when analyzed together in a synergistic way can provide more 
comprehensive information on the vertical structure of smoke injection and transport (e.g. 
Kahn et al., 2008). Joint analysis of MISR plume heights and CALIOP profiles in 
southeast Asian islands of Borneo and Sumatra, for example, showed that the mean 
smoke injection height from MISR was generally in the range of 700 – 750 m, whereas 
the regional smoke layers that are not tied to their sources, as derived from both MISR 
and CALIOP, have layer top heights in the range of 1000 – 2000 m (Tosca et al., 2011).  

Another unique type of satellite measurement that enables retrieval of plume vertical 
profiles under certain conditions employs limb-scattered spectral solar radiation 
measurement techniques. This was demonstrated using the Optical Spectrograph and 
Infrared Imager System (OSIRIS) instrument onboard the Odin satellite in the mapping 
of high plume injection into the stratosphere from the 2009 Australian ‘Black Saturday’ 
bush fires (e.g. Siddaway and Petelina, 2011). That study found that the plume reached an 
altitude range of 18–22 km and circumnavigated the globe within a span of 5°S–25°S 
latitude, lasting about 3 months, and with the plume peak radiance decreasing by 50% 
every 19 days. 

 

2.5 Space-­‐based	
  Constraints	
  on	
  Aerosol	
  Microphysical	
  and	
  Optical	
  Properties	
  	
  
Knowledge of smoke-aerosol microphysical and optical properties can significantly 

improve the modeling of biomass-burning smoke impacts on air quality and climate. As 
aerosol remote sensing is based on optical measurements, typically, optical properties are 
somewhat more straightforward to retrieve from satellite observations than microphysical 
or chemical properties. The most common aerosol optical properties that can in principle 
be retrieved from satellite measurements include: spectral 
extinction/absorption/scattering coefficients (σe, σa, σs), aerosol index (AI), spectral 
aerosol optical depth or thickness (AOD or AOT or τa), Ångström exponent (Aexp or α), 
spectral single-scattering albedo (ω0λ), and refractive index (RI); whereas the typical 
microphysical parameters include: particle shape, effective radius, particle composition, 
and some measure of size distribution. Currently operating satellite sensors provide some 
constraints on one or more of these properties (see Tables 1 & 2). The associated 
uncertainties on many of these retrieved parameters are not yet quantified, although in 
most cases, they are believed to be so significant that, at the current level of the 
technology, satellite retrievals of such microphysical properties are considered qualitative 
rather than quantitative, and are essentially a classification of aerosol type (e.g., Kahn et 
al., 2010). Detailed characterization of the essential microphysical properties of smoke 
particles is best done with in situ measurements at present. 

One of the most direct ways that smoke aerosols have been identified and 
characterized has been to focus studies on specific regions and seasons where, through 
prior studies, the aerosols are known to be dominated by smoke. For example, such 
regionally-focused smoke-aerosol studies have been conducted during the biomass 
burning seasons in: African savanna (e.g. Ichoku et al., 2003b; Myhre et al., 2003), 
Australia (e.g. O’Brien and Mitchell, 2003), Brazil (e.g. Kaufman and Fraser, 1997; 
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Kaufman et al., 1998b), Canada (e.g. Chung and Le, 1984; Ferrare et al., 1990; Hsu et al., 
1999), Siberia (Cahoon et al., 1994), as well as several other regions. Although these 
region-focused methods provide important information about smoke distributions in 
regions and seasons where biomass burning is dominant, it is still necessary to have a 
generic way of distinguishing smoke from other aerosol types retrieved from satellite 
observations, to gain more knowledge about the places and times where these different 
aerosol types have the potential to mix with smoke. This will facilitate an accurate 
assessment of biomass burning smoke impacts on larger scales. 

MISR can distinguish three to five aerosol particle size bins, two to four bins in 
single-scattering albedo, and spherical vs. non-spherical particles, under favorable 
retrieval conditions (e.g. Chen et al., 2008; Kalashnikova and Kahn, 2008; Kahn et al., 
2010).  Such variety of complementary optical and microphysical information can be 
used to distinguish smoke from dust in many practical situations (e.g. Liu et al., 2007a, b; 
Kalashnikova and Kahn, 2008; Dey and Di Girolamo, 2010). However, because the 
current MISR aerosol algorithm (version 22) does not contain analogs of dust and smoke 
optical mixtures, there are retrieval issues over the Sahel of Africa in seasons when both 
dust and smoke are present in significant amounts (e.g. Kahn et al., 2009). (These 
retrieval issues will be corrected in the next version of the MISR aerosol product.) 
MODIS assumes particle properties based on an aerosol climatology derived from 
AERONET data over land (e.g. Levy et al., 2010). However, like MISR, the current 
(Collection 5) MODIS aerosol product version also has issues when smoke and dust are 
mixed in the column. Nevertheless, MODIS derives aerosol fine-mode fraction (FMF) 
over water (e.g. Remer et al., 2005, 2008). Using FMF as a way of distinguishing coarse-
mode-dominated aerosol types such as mineral dust from fine-mode-dominated aerosol 
types such as smoke, Kaufman et al. (2005) developed a qualitative mapping of dust vs. 
smoke or pollution transport. That method included a series of empirical corrections to 
account for overlapping fine and coarse size distributions. OMI can identify ultraviolet 
(UV) absorbing species, such as smoke, over land and water, even above cloud, but has 
reduced sensitivity to aerosol near the surface (e.g. Ahn et al., 2008). Calipso-CALIOP 
utilizes the analysis of lidar ratios to distinguish between the main aerosol types (biomass 
burning, dust, oceanic, and urban/industrial pollution), as well as situations where aerosol 
and dust are mixed, categorized as ‘polluted dust’ (e.g. Cattrall et al., 2005; Omar et al., 
2009). 
 

2.6 Satellite	
  Monitoring	
  of	
  Biomass	
  Burning	
  Trace	
  Gases	
  	
  
A thorough literature review of biomass burning emissions by Andreae and Merlet 

(2001) catalogued a few identifiable particulate species, but also, several dozen trace 
gases whose relative concentrations in smoke typically span more than six orders of 
magnitude. In terms of total annual global emissions estimates, some of the most 
abundant trace gases in smoke (listed in order of decreasing amount) are: CO2 (~13,400 
Tg/yr), CO (~690 Tg/yr), NMHC (~49 Tg/yr), CH4 (~39 Tg/yr), N2 (~26 Tg/yr), NOx 
(~21 Tg/yr), H2 (~15 Tg/yr), Methanol and Acetic Acid (~13 Tg/yr) each, and NH3 (~10 
Tg/yr), whereas others are quantified in single digits and fractions of Tg/yr (Andreae and 
Merlet, 2001). For example, based on airborne measurements of over 40 trace gas species 
emitted in fresh smoke in Canada during the 2008 Arctic Research on the Composition of 
the Troposphere from Aircraft and Satellites-B (ARCTAS-B) intensive field campaign 
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(June–July, 2008), it was found that CO2, CO, and CH4 alone comprised 98.6% of the 
measured carbon released from fires (Simpson et al., 2011). Many of these fire-emitted 
trace gases have significant climate and/or air-quality implications. For instance, after 
water vapor (H2O), CO2 followed by CH4 are two of the most important atmospheric 
greenhouse gases (e.g., Frankenberg et al., 2005a), with the atmospheric-heating efficacy 
of CH4 per unit weight being over 25 times greater than that of CO2 (e.g. Schneising et 
al., 2009); CO and NOx are two of the six ‘criteria pollutants’ identified by the US EPA 
as being harmful to public health and the environment (e.g. Koren, 1995).  

Fortunately, many of the above-mentioned most abundant biomass-burning emissions 
species are presently measurable by remote sensing, but others are not. Although the 
NASA Orbiting Carbon Observatory (OCO) mission, dedicated to measuring carbon 
dioxide (CO2), failed to reach orbit due to launch failure in 2009, a replacement mission, 
OCO-2 is scheduled for launch in 2013. In the meantime, CO2 is being retrieved from 
Envisat-SCIAMACHY (e.g. Buchwitz et al., 2005a,b, 2006, 2007), Aqua-AIRS (e.g. 
Chahine et al., 2008), and the Greenhouse gases Observing SATellite (GOSAT) (Butz et 
al., 2011). Carbon monoxide (CO) is one of the few gases whose remote sensing retrieval 
started in the earliest days of satellite earth observation, including from measurements 
conducted from space-shuttle missions (e.g. Reichle et al., 1986). Currently, CO is 
routinely retrieved either in the form of total-column amount or as profiles from Terra-
MOPITT (e.g. Deeter et al., 2003; Edwards et al., 2006), Aqua-AIRS (e.g. McMillan et 
al., 2005), Aura-TES (e.g. Beer et al., 2001), Envisat-SCIAMACHY (e.g. Frankenberg et 
al., 2005b; Buchwitz et al., 2005b, 2006), and MetOp-IASI (e.g. George et al., 2009). 
Methane (CH4), like CO, is retrieved from various satellite sensors, sometimes in 
conjunction with CO or CO2 (e.g. Deeter et al., 2003; Buchwitz et al., 2005b, 2006; 
Frankenberg et al., 2005a, 2006; Schneising et al., 2009; Butz et al., 2011). Similarly, the 
nitrogen oxides (NOx) are retrieved in conjunction with some of the aforementioned trace 
gases from different satellite sensors, including the Global Ozone Monitoring Experiment 
(GOME) instrument aboard the ERS-2 satellite (e.g. Spichtinger et al., 2001) and the 
Halogen Occultation Experiment (HALOE) instrument (e.g. Park et al., 2004) onboard 
the Upper Atmosphere Research Satellite (UARS) that was decommissioned in 2005.  

Several of the above-mentioned trace gases (e.g. CO, CH4, NOx, and hydrocarbons) 
that are directly emitted from biomass burning are precursors for tropospheric ozone (O3) 
formation (e.g. Jonquières et al., 1998; Thompson et al., 2001). Although ozone is a 
secondary product of biomass burning, its role as one of the ‘criteria pollutants’ makes it 
an important consideration in this discussion. Satellite retrieval of ozone has a long 
history (e.g. Thompson et al., 2001; Edwards et al., 2003). It is routinely retrieved from 
many satellite sensors, both past and current, including the TOMS series, the GOME 
series, OSIRIS, and OMI (see Tables 2 and 4b). 

The uncertainty of fire-emitted trace gas measurements from satellites varies, 
depending on species and sensor characteristics. Since there are quite a number of such 
sensors and numerous trace gases, it is beyond the scope of this paper to review the 
uncertainties in detail, as such a review can take up an entire paper, even if it is focused 
on the most prominent gases, such as CO2, CH4, and CO (e.g. Schneising et al., 2008, 
2009; Yurganov et al., 2010, 2011). However, as an illustration of the current level of 
uncertainty in this domain, Yurganov et al. (2011) evaluated total column (TC) CO 
retrieval from three space-based infrared sounders (MOPITT, AIRS, and IASI) against 
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concurrent CO measurements from ‘ground-based spectrometers in Moscow and its 
suburbs during the forest and peat fires that occurred in Central Russia in July–August 
2010’. One of the major known issues highlighted is that of inadequate sensitivity of the 
satellite CO measurements in the PBL, which is a major problem in studying biomass 
burning emission rates and air quality. The study indicated that: ‘On certain days the CO 
effective TC retrieved from data of space-based sounders was 2–3 times less than those 
obtained from the ground’ (Yurganov et al., 2011, p. 7925). After compensating for the 
missing CO, which is the amount by which the measurements from ground-based 
spectrometry exceeds those from the satellite-based sounders, they estimated that this 
corrected satellite-based CO had a final uncertainty of ~30% for the Russian fires.  On 
the other hand, Schneising et al. (2008, p. 3827; 2009, p. 443) referring to CO2 and CH4, 
indicated that ‘SCIAMACHY on ENVISAT is the first satellite instrument whose 
measurements are sensitive to concentration changes of the two gases at all altitude levels 
down to the Earth’s surface where the source/sink signals are largest’. They further 
explained part of their analysis method by stating: ‘The greenhouse gas columns are 
converted to dry air column-averaged mole fractions, denoted XCO2 (in ppm) and XCH4 
(in ppb), by dividing the greenhouse gas columns by simultaneously retrieved dry air 
columns.’ By comparing XCO2 with Fourier Transform Spectroscopy (FTS) 
measurements at two northern hemispheric mid-latitude ground stations, they found a 
precision of 1-2%, a systematic low bias of ~1.5%, and a relative accuracy of 1-2% for 
monthly averages at a spatial resolution of about 7°×7° (Schneising et al., 2008). Also, by 
comparing the satellite	
  XCH4 to that of the TM5 model, which had been ‘optimally 
matched to highly accurate but sparse methane surface observations’, after accounting for 
a systematic low bias of ∼2%, they found agreement with TM5 to be typically within 1–
2% (Schneising et al., 2009). 
 

2.7 Smoke	
  Particulate	
  and	
  Gaseous	
  Emission	
  Source	
  Strengths	
  	
  
Emission source strength is the quintessential ingredient for detailed study/modeling 

of the atmospheric loading, transport, and the impact of diverse fire emission species. 
Despite advancements in satellite measurement techniques during the last few decades, 
and the abundance of remote-sensing data products, emission source strength still cannot 
be measured directly from space because of the associated spatial and temporal sampling 
limitations, the inherent ambiguity in resolving mixing from different sources, and the 
underlying multi-species composition. Therefore, source strength must be estimated 
using indirect approaches, such as from bottom-up estimates of fuel type and 
consumption (e.g., Eq. (1) and (2)). Past methods of estimating fire emissions were based 
on proxy information such as statistics of vegetation, population, rainfall, and agricultural 
practices, which were grossly inadequate in terms of spatio-temporal coverage, 
efficiency, and accuracy (e.g. Seiler and Crutzen, 1980; Crutzen and Andreae, 1990; 
Andreae, 1991; Hao and Liu, 1994).  Due to the inadequacy of emission source-strength 
parameterization in climate and other atmospheric models, the overall effects of fires and 
emitted smoke constituents on climate and air quality are still poorly understood. 
Therefore, there is a need to develop more effective satellite products in these areas (e.g. 
Scholes 1995; Scholes and Andreae, 2000; Andreae and Merlet, 2001). 
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Present satellite-based methods for estimating smoke-aerosol and trace-gas emissions 
from fires often use post-fire burned areas (e.g., Hoelzeman et al., 2004; Ito and Penner, 
2004; Kasischke and Penner, 2004; Korontzi et al., 2004; Palacios-Orueta et al., 2004). 
Typically, the burned areas are substituted for 

€ 

A  in Eq. (2), which is then used in 
conjunction with Eq. (1) and the associated parameters to simulate the emissions. 
Incidentally, satellite burned-area estimates are still saddled with much uncertainty, and 
as they are normally derived after fires have burned out, they cannot meet near-real-time 
air-quality applications requirements.  Alternatively, fire pixel counts from satellite 
observations are used as proxies for estimating 

€ 

A , which are then used for emissions 
estimates (e.g. Kaufman, 1990; Chin et al., 2002; Duncan et al., 2003; Zhang and 
Kondragunta, 2008; Reid et al., 2009). However the use of satellite fire pixel counts 
imposes even more uncertainty than direct estimates of 

€ 

A , because it does not reflect any 
quantitative fire characteristics that actually determine the smoke emission rate, such as 
size, strength or intensity, fuel loading, smoldering/flaming fractions, and smoke 
injection height. Besides, they do not take into account the fires that may have been 
missed because of cloud cover or other factors, although in certain cases efforts are made 
to compensate for such omissions (e.g. Giglio et al., 2003b). On the other hand, the 
burned area products can implicitly include any observable areas that are burned over a 
time period of up to a few months or more. Furthermore, fire pixel counts cannot be 
consistent across multiple satellite sensors with different spatial resolutions or even 
within the same sensor when there is significant variation of ground pixel size within the 
same image scene, as in the case of most geostationary and broad-swath polar orbiting 
satellite sensors, such as MODIS, AVHRR, GOES, and SEVIRI. 

Various emission inventories based on satellite active fire pixel counts and/or post-
fire burned areas have been developed during the last decade. Of such datasets, the one 
most widely used in global models is the Global Fire Emissions Database (GFED), which 
was first established in the mid-2000s, and is currently in its third version (van der Werf 
et al., 2003, 2006, 2010). GFED is based on burned areas, fire pixel counts, and plant 
productivity derived from the MODIS sensor. For pre-MODIS time periods, data from 
other satellite sensors, such as active fire pixel counts from the Tropical Rainfall 
Measuring Mission’s (TRMM) Visible and Infrared Scanner (VIRS) and the Along-Track 
Scanning Radiometer (ATSR), as well as plant productivity data derived from AVHRR, 
are used to estimate the biomass burned and emitted species. Another satellite-based fire 
emissions product that is currently used by the community is the Fire Locating and 
Modeling of Burning Emissions (FLAMBE), developed through a joint project by the 
U.S. Navy, NASA, NOAA, and University of Maryland (Reid et al., 2004, 2009). 
FLAMBE uses the diurnal observations of active fire hotspots from the GOES 
geostationary satellite imagers, processed with the NOAA/NESDIS operational Wild-Fire 
Automated Biomass Burning Algorithm (WF_ABBA) for the western hemisphere, and 
the near real-time MODIS fire products from the University of Maryland/NASA fire 
remote-sensing team for everywhere else. Emission fluxes are then calculated using a 
source function that takes into account the biomass density, burn completeness, and 
emission factors. Regional-scale studies in the Amazon Basin, conducted within the 
context of FLAMBE, revealed that emissions biases due to satellite active-fire location 
errors were in the range of +3% to +19% for MODIS and +6% to +39% for GOES (Hyer 
and Reid, 2009). Comparisons of PM2.5 emissions between GFED and FLAMBE are 
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typically within a factor of two to three, and the magnitude of the differences varies with 
region (Reid et al., 2009). Apart from GFED and FLAMBE, there are quite a few other 
satellite-derived emissions data sets that are either still in the research mode/under 
development or intended for special purposes within a limited region/time period (e.g. 
Duncan et al., 2003; Pouliot et al., 2008; Roy et al., 2008b; Liousse et al., 2010; Urbanski 
et al., 2011). 

In an effort to reduce the sources of uncertainty and employ more quantitative 
satellite measures to estimate biomass-burning emissions and rates, scientists are 
directing attention to the use of FRP and FRE. A linear relationship of the form in Eq. (1) 
linking FRP (or FRE) to smoke emissions has been developed, whereby xM  can be 
replaced with FRP and xEF  is replaced with empirically derived FRE-based emission 
coefficients to generate smoke-aerosol emission rates (e.g. Ichoku and Kaufman, 2005). 
If xM  is replaced with FRE (instead of FRP) the total emission corresponding to the 
period covered by the FRE is generated. However, this is subject to both the intrinsic 
uncertainty of FRP measurement and that emanating from the observation frequency and 
time-integration process used to derive FRE. Furthermore, although small fires have been 
used at the laboratory scale to demonstrate that the FRE to burned-biomass relationship is 
not significantly dependent on vegetation type and fuel load (Wooster et al., 2005), there 
remains some uncertainty as to how that linear relationship translates to landscape-scale 
fires that are measured at the typical 1-km to 4-km pixel sizes of large-coverage satellite 
sensors such as MODIS, SEVIRI, or GOES. 

The modified Eq. (1) relationship linking emissions to FRE has been verified and 
indirectly validated in the laboratory by mimicking corresponding satellite measurements 
at a small scale (Ichoku et al., 2008b). Although the use of FRP and FRE for emissions 
estimations does not compensate for missed observations (as in the case of pixel counts, 
it offers a set of new advantages: (i) they are quantitative sub-pixel measures related to 
important biomass burning variables; (ii) they transcend intra- and inter-sensor spatial 
variability; (iii) they are simple to use and avoid complications involved in estimating the 
variables in equation (2); and (iv) they can be applied to derive emissions in near real 
time, as would be appropriate for use in air-quality monitoring and forecasting. However, 
these are presently only potential advantages, and will be quantitatively meaningful when 
the various uncertainties associated with this method are well constrained or at least 
understood and clarified with associated error budgets. In the meantime, the scientific 
community is increasingly exploring the potential applicability of satellite FRP 
measurements in various areas of study. For instance, FRP-based emission approaches 
have been successfully tested for air-quality applications in the US (e.g. Jordan et al., 
2008), Canada (e.g. Henderson et al., 2008), and Europe (e.g. Sofiev et al., 2009), and has 
also been investigated for general global emissions research and applications (e.g. 
Vermote et al., 2009). Furthermore, satellite FRP measurements have begun to be 
implemented experimentally in certain global models, such as the NASA Goddard Earth 
Observing System-version 5 (GEOS-5) model, which is hosting the development and 
evaluation of a new FRP-based emissions dataset referred to as the Quick Fire Emissions 
Database (QFED, e.g. van Donkelaar et al., 2011). Also, a more recent study by Kaiser et 
al. (2012) demonstrates the assimilation of the FRP measurements from MODIS in the 
Global Fire Assimilation System (GFASv1.0)	
   operated	
   under	
   the	
   Monitoring 
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Atmospheric Composition and Change (MACC) project within the European Centre for 
Medium-Range Weather Forecasts (ECMWF). Nevertheless, emissions based on FRP 
and FRE are still subject to significant uncertainty that propagate from these and other 
parameters. For instance, use of FRP-based burned biomass with literature-based 
emission factors within GFASv1.0 was found to yield particulate matter amounts 
requiring a boost by a factor of 2 – 4 in order to agree with expected global distributions 
of organic matter and black carbon (Kaiser et al., 2012). However, it is not clear how 
much of the uncertainty stems from the satellite FRP measurement, the conversion 
factors from FRP to burned biomass, the literature emission factors, the injection height 
assumptions, and other model parameterizations. Therefore, more research is still needed 
to truly quantify the absolute magnitudes and sources of these uncertainties. 

 

2.8 Satellite	
  Monitoring	
  of	
  Fire-­‐related	
  Meteorological	
  Conditions	
  	
  
Satellite-based constraints on the vertical distribution of smoke were discussed in 

Section 2.4, because smoke injection height has broad implications for smoke dispersion, 
boundary layer ventilation, and the initiation of downwind transport. However, it is 
recognized that meteorological factors are also important for the formation and evolution 
of smoke plumes, beginning with temperature and humidity conditions in the source 
regions, typically covered under “fire weather” (e.g. Haines, 1988; Potter et al., 2008) 
and continuing with downwind horizontal advection, vertical mixing, hydration, and 
precipitation that govern the transport and ultimate deposition of smoke particles.   

Satellites provide some information that can be used to derive special indices for 
forecasting fire potential, such as the Alaska Fire Potential Index (e.g. Burgan et al., 
1998; Peterson et al., 2010). Such satellite input information may include, for instance, 
temperature and humidity profiles from Aqua-AIRS (e.g. Susskind et al., 2003; Chahine 
et al., 2006), rainfall from the TRMM and other satellite sensors (e.g. Adler et al., 2000), 
and vegetation indices, such as the normalized difference vegetation index (NDVI) from 
MODIS, AVHRR, or other applicable sensors (e.g. Tucker et al., 2005). On the other 
hand, satellites currently do not provide measurements of the local meteorological 
conditions that drive fire spread rate and near-fire smoke plume dynamics and 
entrainment. This is because such fire-behavior and source-emissions features are 
characterized by high spatial and temporal variability, and are logistically too complex to 
follow from satellites, which are limited by the fact that those providing high spatial-
resolution can offer only very low temporal resolution and vice versa. 

Regarding downwind transport and deposition, satellite observations are primary 
resources, as they can monitor the distribution of smoke plumes over large areas (e.g. 
Prins and Menzel, 1992). An example of this application is implemented in the 
NOAA/NESDIS Hazard Mapping System (HMS), where the plume transport can be 
visualized on movie loops based on the relatively high temporal-frequency sequence of 
the Geostationary Operational Environmental Satellite (GOES) imagery (e.g. Schroeder 
et al., 2008c). This capability is not entirely limited to geostationary satellite sensors, but 
is also applicable to a certain extent using wide-swath daily repeat-pass satellite sensors. 
For instance, a history of smoke in transit can be reconstructed from changes in the 
smoke-plume total-column AOD or CO measurements from satellite (e.g. Colarco et al., 
2004; McMillan et al., 2008).   
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3 Modeling	
  
Given that satellite observations are essentially snapshots that represent only the 

instantaneous state of the observed scene, modeling is necessary to establish the relevant 
dynamics and interconnections associated with a phenomenon of interest. Accounting for 
fire and smoke effects on climate and air-quality requires different scales of modeling in 
order to adequately capture the process-level characteristics of the emission, transport, 
and interactions of the fire-generated heat fluxes and smoke constituents. In this section, 
we discuss three of the modeling activities that are most relevant to biomass burning: 
plume-rise, transport, and inverse modeling. 

3.1 Plume-­‐rise	
  modeling	
  	
  
Early models of wildfire plume rise evolved from cumulus convection parcel 

modeling (e.g., Simpson and Wiggert, 1969).  Buoyant energy flux, ambient atmospheric 
stability structure, and entrainment, which are among the main factors involved in 
cumulus convection modeling, are the primary physical considerations for smoke plumes. 
However, in some cases, the ambient wind profile and latent heat release are added 
complications for smoke plumes.  Efforts at modeling plume rise range from scaling laws 
and simple diagnostic parcel models to fully prognostic two- and three-dimensional 
finite-difference numerical simulations (e.g., Cogan, 1985; Toon et al., 1988; Arya and 
Lape, 1990: Heikes et al., 1990; Luderer et al., 2006; Trentmann et al., 2002, 2006; 
Freitas et al., 2006, 2007).   

Constraining these models quantitatively with observations is a persistent challenge. 
The most detailed information comes from surface-based and airborne plume 
measurements (e.g., Cofer et al., 1988; Radke et al., 1995; Riggan et al., 2004; Cahill et 
al., 2008; Cammas et al., 2009; Burling et al., 2011; Yokelson et al., 2011; Gatebe et al., 
2012), but there are few such quantitative measurements of wildfires, especially given the 
diversity of fire types, and even fewer cases where radiative, dynamical, and 
thermodynamic structure were constrained both inside the plume and in the ambient 
atmosphere. The buoyant energy flux is highly variable among different fire types as 
well as within most active burning regions, and this quantity is difficult to measure 
directly.  For use as a constraint on plume-rise models, it is only loosely related to the 
radiant energy flux (i.e. FRP) routinely observed from space (Section 2.3 above), due to 
uncertain fire emissivity values, sub-pixel variability in fire occurrence and properties, 
and overlying smoke opacity, each of which is itself poorly constrained by observations 
in most cases.  Atmospheric stability structure is usually obtained from general 
circulation models, for which the largest uncertainty relative to plume-rise modeling is 
the rapidly varying daytime vertical extent of the atmospheric boundary layer (e.g., Val 
Martin et al., 2010).  Entrainment is yet more difficult to constrain, as it depends upon 
small-scale interactions between the plume(s) and the surroundings. Advanced 
parameterizations are not able to adequately account for even model-based anisotropic 
turbulent mixing at smaller scales (e.g., Herzog et al., 2003).  Yet even the relatively 
simple approach of scaling entrainment according to an assumed plume cross-sectional 
area (e.g., Freitas et. al., 2007), which should represent the situation well if burning is 
uniform over the assumed fire area, has limitations in the more typical situation where the 
convective elements are fragmented.  
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As such, plume-rise modeling to date has achieved qualitative success in reproducing 
observed smoke injection patterns, provided satellite-measured FRP is scaled up by 
factors between about two to ten to obtain sufficient buoyant energy flux (e.g., Kahn et 
al., 2007). Advances in this area will likely require detailed, near-simultaneous field 
measurements of all the relevant factors, on spatial scales fine enough to resolve 
individual flaming and smoldering fire elements. The application of plume-rise models 
for aerosol transport modeling is discussed in the next section. 
	
  

3.2 Transport	
  modeling	
  	
  
Global and regional models are often used to simulate biomass burning emissions and 

transport in order to assess the environmental impacts of biomass burning (e.g. Wang and 
Christopher, 2006; Wang et al., 2006; Hodzic et al., 2007; Turquety et al, 2009; Longo et 
al., 2010). Two critical inputs to the model are (1) emission strengths of trace gases and 
aerosols and (2) injection height. Whereas emission strengths determine how much 
material is released to the atmosphere, the injection height regulates the spatial extent of 
smoke plume transport. 

As described in previous sections, emission of trace gases and aerosols is generally 
calculated from Eq. (1) and (2) as a function of burned area, dry mass burned, and 
emission factor for each species. Despite significant progress made during the past few 
decades in quantifying them, facilitated by advancement in satellite observations of fires, 
burned area, plume structure, and smoke constituents, there are still large uncertainties in 
each term in Eq. (1) and (2). For example, both the magnitude and spatial distribution of 
estimated burned area (

€ 

A  in Eq. (2)) can vary considerably, sometimes by orders of 
magnitude, between a fire-counts-based approach (e.g., Giglio et al., 2006) and a 
reflectance-based burn scar detection (Roy et al., 2008a), and among different satellite 
sensors (Roy and Boschetti, 2009). The fuel load (

€ 

B × α  in Eq. (2)) estimated using 
different methods also deviates by more than a factor of 2, and the emission factor ( xEF  
in Eq. (2)) for any particular biome can differ significantly in the literature, due to limited 
field measurements. The combination of these uncertainties results in large uncertainty in 
the calculated biomass burning emission strength. Fig. 3 shows an example of burned-
area and dry-mass differences between a few different datasets. Such a large diversity of 
estimated biomass burning emissions greatly dampens our confidence in assessing the 
environmental and climate impacts of biomass burning. 

Satellite observations of trace gases and aerosol optical depth (AOD) near biomass 
burning source areas can be used to constrain the emission strength when other sources, 
such as pollution and dust, are much smaller compared to the fire emissions. Figure 4 
demonstrates the AOD simulated with a transport model, the Goddard Chemistry Aerosol 
Radiation and Transport (GOCART) model, using different combinations of burned area, 
biomass consumed, and emission factors over Russia for the fire case of July 20, 2006, 
and the results are compared with the MODIS-derived spatial distribution of plume AOD. 
In this case, the maximum AOD simulated by the model varies by a factor of 5 with 
different emission estimates, and the MODIS AOD data indicates that the emission 
obtained from fire-counts-based burned area and high emission factors best match the 
observations (Petrenko et al., 2011). 
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Another subtle issue regarding modeling biomass burning emission is the diurnal 
variation of fire intensity. In most regions, burning intensity peaks between noon and 
early afternoon, as estimated from geostationary satellite observations (e.g. Prins et al., 
1998; Zhang et al., 2008) and field experience, especially for agriculture-related burning 
that typically has a very large diurnal cycle. However, because of the limited data 
available for describing the diurnal cycles of fire emissions, most global models use daily 
to monthly averaged biomass burning emissions. Recently, Vermote et al. (2009) 
parameterized the diurnal cycle of fire emissions in different ecosystems based on the 
statistics of the ratio of FRP from Terra and Aqua MODIS and geostationary satellite 
observations at certain locations. Such diurnally resolved fire emission datasets should be 
adapted into chemical transport models to improve the time-resolved fire events, which is 
particularly important for air quality forecast and management. 

With respect to the biomass burning emission injection height, most global or 
regional transport models put these emissions within the PBL. Statistically, this 
assumption represents the most common emission altitude from biomass burning, and the 
plume released in the PBL can be transported upward by convective processes, to bring 
some of the smoke species into the free troposphere. However, the absence of specific 
consideration of additional buoyancy generated by the fire would result in an 
underestimation of the injection height, and consequently the plume altitude and transport 
efficiency, since in the free troposphere, where the removal processes are less efficient, 
pollutants are advected away from the source region faster than in the PBL. This is 
especially the case for big fires. For example, using global chemistry transport models 
and trajectory analysis, Colarco et al. (2004) showed that the observed downwind 
atmospheric concentrations of the emissions from the July 2002 Canadian wildfires in the 
northeastern United States were best reproduced by injection at 2–6 km. Similarly, Leung 
et al. (2007) reported that, in the case of the 1998 Siberian fires, injecting 60% of the 
emissions at 3–5 km altitude improved agreement with CO surface and column 
measurements. As described in the previous section, more sophisticated plume rise 
models have been developed to explicitly take into account the heat flux (often 
represented by FRP), fire size, fuel moisture, and meteorological conditions (relative 
humidity, temperature, wind speed, and atmospheric stability). Using a 1-D plume-rise 
model imbedded in a regional transport model, Freitas et al. (2007) demonstrated that 
explicitly modeling the plume-rise process significantly improved the model-simulated 
vertical profiles of CO concentrations over the Amazon, whereas they were 
overestimated in the lower troposphere but underestimated in the mid troposphere when 
plume rise was not included. However, as pointed out in the previous section, the input 
parameters for the plume rise model are highly variable and difficult to quantify. At 
present, the biomass injection height for simulating large fires usually has to be adjusted 
based on the plume extent and/or vertical profiles observed by satellite and in-situ 
instruments on a case-by-case basis. 
	
  

3.3 Inverse	
  Modeling	
  	
  
A different method to constrain the biomass burning emissions using satellite and 

other observations is through “inverse modeling”. In this approach, the best description of 
the atmospheric state of the species (e.g., trace gases or aerosols), either from satellite and 
other observations or from model assimilation of observations, is used to “retrieve” 
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emissions, by applying the adjoint method to invert a chemistry transport model (e.g. 
Henze et al., 2007; Dubovik et al., 2008; Kopacz et al., 2009).	
  In	
  the	
  inversion	
  process,	
  
a chemical transport model can be viewed as a numerical operator that acts on a vector of 
parameters, including physical and chemical processes, to yield an estimate of the 
evolved atmospheric distributions. In general, the parameters in a chemistry transport 
model are emissions, boundary conditions, initial conditions, transport, chemical 
reactions, and dry and wet deposition; for aerosols, the additional size distribution and 
light extinction efficiency parameters are also included. In theory, all these parameters 
could be optimized simultaneously. However, most inverse modeling studies have 
focused on emission, because it is the most sensitive and critical parameter (e.g. Henze et 
al., 2009; Dubovik et al., 2008). Fig. 5 illustrates the inverse modeling concept for 
retrieving aerosol emissions with AOD observations from satellite and the GOCART 
model (Dubovik et al., 2008). Using the MODIS fine mode AOD products, Dubovik et 
al. (2008) produced a map of daily global fine mode aerosol sources, mostly BC, OC, and 
sulfate from pollution and biomass burning, in 2001 (Vermote et al., 2009). These 
products were used in turn to derive the emission coefficients for different biomes, based 
on the MODIS FRP (Vermote et al., 2009). Inverse modeling represents one of the 
closest connections between observations and models.  
	
  

4 Measurement	
  to	
  Modeling	
  Synergy	
  
Although satellite observations provide synoptic overviews of fire/smoke scenes, a 

comprehensive understanding of the fire phenomenon and various impacts cannot be 
obtained from satellite observations alone. The more intricate issues in Climate and Air-
quality studies, involving the establishment of spatial and temporal continuity, are better 
addressed with the help of models. Satellite data yield significant benefits in advancing 
these studies by providing model inputs and validation for model results. However, there 
is the question of compatibility between satellite data and input requirements of models.  

Regarding the issue of spatial and temporal compatibility between models and 
satellites, models expect to analyze entire fires, whereas satellites provide pixilated 
observations of fires. Regardless of whether a fire event is observed as a single pixel or a 
cluster of these, the pixels identified as containing fires are hardly ever fully burning. 
This can create significant gaps in both fire and burned-area satellite products, relative to 
model input parameter expectations. On the other hand, many climate models have much 
coarser spatial resolution (typically on the order of 1˚ longitude and latitude) than typical 
satellite fire products (typically on the order of 1 km), although such models employ 
special treatment to represent fire emissions from point sources (e.g. Freitas et al., 2007). 
The temporal compatibility issues stem from the fact that whereas models require 
information on the burning over a finite period of time that can vary from fractions of an 
hour to a day or even to the duration of an entire multi-day fire event, satellites provide 
snapshots interspersed by time intervals varying from several minutes (for Geostationary 
satellites) to several days (for polar orbiting satellites). The larger temporal gaps 
generally necessitate interpolation by the models, which can involve a wide variety of 
assumptions. For instance, Chen et al. (2009) studied the sensitivity of CO and aerosol 
transport modeling to the temporal and vertical distribution of North American boreal fire 
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emissions, and found that the timing and injection height of biomass burning emissions 
are among the largest uncertainties when modeling forest fire effects. The mismatch in 
temporal scales between satellite observations and model requirements can probably be 
mitigated to some extent by having multiple, evenly distributed, Geostationary satellites 
providing continuous coverage around the earth, each being able to measure fires 
accurately at well coordinated, short time intervals (preferably ≤15 min). With certain 
limitations, this geostationary satellite configuration is almost already available with the 
American GOES-East and GOES-West series, the European Meteosat Second Generation 
(MSG), the Japanese MTSAT series, and the Korean COMS satellite series. The 
limitations include the fact that being primarily designed for weather monitoring, the 
geostationary satellite footprint is typically coarse, with pixel sizes in the range of 3 – 5 
km near the sub-spacecraft point and much poorer toward the edges of the coverage area, 
resulting in massive omissions of small to medium sized fires that are the most abundant, 
especially in non-forest regions. Furthermore, even the fires that are detected are not 
necessarily measured accurately in the quantitative sense of retrieving the fire sub-pixel 
temperature, area, and FRP, as is possible from polar-orbiting satellite sensors much 
closer to Earth’s surface. Fortunately, some of the future geostationary satellite missions, 
such as GOES-R, are considering fire measurements more seriously and are not only 
paying closer attention to sensor fire-measurement accuracy design requirements than in 
the past, but are also making an effort to increase the spatial resolution and temporal 
sampling frequency (e.g. Schmit et al., 2008). If such fire-measurement-friendly 
initiatives propagate through other geostationary operators in developing future missions, 
the future will be bright for quantitative fire monitoring. The gaps that will remain in the 
polar regions (particularly toward the Arctic, where Boreal forest and peat fires are 
common) can be covered by polar-orbiting satellite sensors such as Terra- and Aqua-
MODIS and NPP-VIIRS, that provide more frequent overpasses at high latitudes. Under 
the foregoing scenario, the satellite/model spatial/temporal mismatch will be significantly 
reduced. 

Apart from the spatial and temporal issues, there are also quantitative differences 
between the satellite measurements and model variables themselves. Most earlier and 
current models were originally developed on the basis of traditional in situ 
measurements, and their parameterizations were based on geophysical variables, most of 
which are not directly measurable by current remote sensing techniques that essentially 
derive few geophysical parameters from radiance measurements. Table 5 is a list of 
typical model inputs and their closest corresponding satellite-measured equivalents. Most 
of the model input variables do not have homologues among satellite observations, 
whereas those that do have corresponding measures that do not represent the same 
quantity and often require additional interpretation. As such, most satellite products are 
not exactly the type of data required by models. For instance, whereas models require 
burned biomass amounts as well as fire-released latent and sensible heat to predict smoke 
emissions and injection heights, remote sensing provides burned areas, and radiative heat 
release rates, which must be transformed to parameters that models can ingest. 
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5 Conclusions	
  and	
  Perspectives	
  for	
  Future	
  Research	
  
Satellite remote sensing of fires and fire-related features, including energy release 

rates, burned areas, and the spatial distribution and optical and physical characteristics of 
the smoke particulate and gaseous constituents, has enabled a major advancement in the 
state of knowledge on this subject matter within the past few decades. First, it has 
provided an overview of fire occurrence throughout the globe, thereby facilitating the 
development of clear global and regional inventories of fire activity, as well as maps of 
major emission source locations, relative concentrations, injection heights, and transport 
of smoke around the globe, compared to other sources of aerosols and trace gases. This 
has made model parameterization of smoke emissions more realistic, resulting in 
improved smoke trajectory and atmospheric residency time predictions, and better 
representation of smoke interactions with clouds and radiation. 

Despite these advances in remote sensing in general and satellite fire and smoke 
characterization in particular, there remain large uncertainties in the characterization of 
fire activity, as well as their emissions and impacts. Many aspects of fires are still not 
being quantified adequately or even at all to satisfy basic climate or air-quality modeling 
requirements. First, each polar orbiting satellite having fire-sensing capability can 
observe fires at a given location no more than once or twice per day. As such, only fires 
that are actively burning during satellite overpass times can be observed, whereas those 
that start and end between satellite overpasses cannot be accounted for. Such short-
duration fires are typically rampant in grasslands and agricultural areas where slash-and-
burn is practiced. Although geostationary satellites allow observation at much higher 
(sub-hourly) frequency, because of their typically large pixel footprints relative to those 
of the polar orbiters, they miss small to medium size/intensity fires even when these are 
actively burning during observation times (e.g. Wooster et al., 2005; Roberts et al., 2005; 
Freeborn et al., 2009). Even when fires are observed, there may be significant uncertainty 
in the quantitative measurement of their FRP values, for example, because of intrinsic 
measurement uncertainties as well as possible atmospheric scattering and absorption of 
the fire-emitted thermal radiation, which tend to reduce the top-of-atmosphere signal. The 
result is a tendency to underestimate fire occurrence and activity. The use of interpolation 
or extrapolation approaches helps bridge the spatial and temporal gaps in the fire 
observations, but also adds to these uncertainties. 

Burned area methods can help bridge fire activity gaps, as burned areas implicitly 
include areas consumed during the period leading up to the observation. However, 
satellite burned-area mapping has its own intrinsic uncertainties. First, for many satellite 
sensors, burned areas are mostly smaller than the pixels within which they occur, and 
subsequent aggregation of multiple sub-pixel burned areas can result in large 
overestimation of actual burned areas. In addition, burn severity may be extremely 
heterogeneous in a given burned area, and estimation of burned biomass based on 
assuming uniform degrees of burn can also introduce large uncertainties. Besides, burned 
area inventories usually lack information needed to estimate emission rates at the exact 
dates and times of burning, without which it is impossible to determine the history of 
smoke constituent emissions, their dispersal and transport trajectories, and their 
atmospheric residence times (e.g. Fleming et al., 2012). Both the spatial and temporal 
information are as important as the physical and radiative information about biomass 
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burning and their associated emissions for accurately quantifying how they impact the air 
quality, weather, and the radiative budget that contributes eventually to climate change. 

Satellite observation of smoke constituents is also saddled with uncertainty. First, in 
the satellite measurement process, there is intrinsic difficulty in distinguishing radiances 
originating from the atmospheric particulate or gaseous species of interest with those 
emanating from the surface background and other surface or atmospheric features. 
Although there are ways to compensate for such effects, these methods involve many 
assumptions. Even if a targeted atmospheric particulate or gaseous species is measured 
accurately from satellite, in cases where there is mixing of similar species from different 
sources, such as smoke and vehicular emission aerosols or CO, it is often difficult to 
perform source apportionment in order to determine their relative impacts. Furthermore, 
many smoke constituents, including particulate matter and some trace gases that are 
normally detected by reflected solar ultraviolet and/or visible light, cannot be measured at 
night. Although this may not be a major gap for climate studies, it is for air quality. 

Recent advances in measurement capability and coverage should not be minimized, 
however, and further advancement in satellite remote-sensing technology can address 
many of the limitations outlined above. Other gaps can be filled using alternative 
approaches, such as ground-based and airborne measurements. The development of 
geostationary observations having relatively high (sub-kilometer) spatial resolution 
would represent a significant advance in fire remote sensing, allowing active fires to be 
measured at adequate spatial and temporal resolutions to capture the most important fire 
sizes/intensities throughout the diurnal cycle. Improvement in other remote sensing 
instrumentation and algorithms could reduce current uncertainties in burned area 
estimation, plume profiling, and smoke constituent characterization. Furthermore, effort 
is needed to make satellite retrievals and model input requirements more compatible, by: 
(1) developing new satellite measurements that meet model input-data requirements with 
fewer assumptions, and (2) creating new models or adapting existing ones to use satellite 
data more directly. 
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Figure Captions 
 
Figure 1. Global ecosystem map derived from MODIS based on the International 

Geosphere/Biosphere Program (IGBP) classification scheme. 
 
Figure 2. Fire detection from Aqua MODIS for July 2011 overlaid on a composited 

surface reflectance map (also from MODIS), showing the fire radiative power 
(FRP) value ranges for the individual fire pixels. Compared to the map scale, the 
fire pixels are indicated with relatively large dots to enhance visualization, 
causing substantial fire-pixel overlap in certain regions. 

 
Figure 3. Top: Global daily total burned area in 2006 from three different products: mod1 

= MODIS fire count based estimate using combined Terra (MOD14) and Aqua 
(MYD14) fire counts; mc45 = burned area product (MCD45, Roy et al., 2008a); 
and g31d (GFED version 3 daily product). Bottom: Global daily total burned dry 
mass in 2006 from different combination of burned area as shown in the top 
panel, the available biomass (glc = Global Land Change dataset, asm = A. Soja 
(2004) medium fire intensity, and g3d = GFED v3 daily) (from Petrenko et al., 
2011). 

 
Figure 4. Comparisons of biomass burning AOD from MODIS and GOCART 

simulations using different dry mass burned (see bottom panel in Figure 1x) and 
emission factors (go1 = emission factors of BC, OC and SO2 used in current 
GOCART model, see Chin et al., 2004; GFED-3 = emission factors from Andrea 
and Merlet 2001 used in GFED v3) over the north of Lake Baikal in Russia in 
2006-07-20. The last panel shows the probability distribution function of AOD 
distributions in the regions (from Petrenko et al., 2012, in preparation). 

 
Figure 5. Schematic of an inverse modeling processes (from Dubovik et al., 2008).
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Tables 
 
Table 1: List of variables related to biomass burning that can be observed/measured 
from satellite and potentially useful for climate and/or air-quality modeling 
Observable Variable Acronym/symbol 
Active Fire  
Fire Location FL 
Fire Temperature FT 
Fire Area FA 
Fire Radiative Power FRP 
  
Burned Surface  
Burned Area BA 
Burn Severity BS 
  
Smoke Plume Dispositions   
Near-source Plume Height PH 
Plume Vertical Profile PVP 
  
Aerosol Distribution and Particle Properties  
Aerosol Index AI 
Aerosol Optical Depth or Thickness AOD or AOT 
Aerosol Absorption Optical Depth AAOD 
Aersol Effective Radius Reff 
Aerosol Fine Mode Fraction FMF 
Aerosol Type AType 
Aerosol Angstrom Exponent Aexp 
Aerosol Single Scattering Albedo SSA or ω0 
  
Trace Gas Concentrations  
Carbon Monoxide CO 
Carbon Dioxide CO2 
Methane CH4 
Nitrogen Oxides NOx 
Formaldehyde HCHO 
Ozone O3 
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Table 2: Various satellites and their respective onboard sensors capable of providing data related to fires 
and smoke 

Satellite Launch 
Date* 

Orbit** Sensor Revisit Freq~   
D:Daytime N:Nighttime 

Observed 
Variables 

DMSP(8-15) 1972 P OLS D:1 day,        N:1 day FL 
Landsat(1-7) 1972 P MSS, TM, 

ETM, ETM+ 
D:16 days,    N:16 days BA, BS 

Nimbus -7 1978 P TOMS D:1 day,        N:1 day AI, O3 
TIROS-N/ 
NOAA(6-19) 

1978 P AVHRR  D:1-2 days,   N:1-2 days FL, AOD 

Meteor-3 1991 P TOMS D:1day,         N:1 day AI, O3 
GOES(8-15)  1994 G IMAGER D:30 min     N:30 min FL, FA, FT, FRP, 

AOD 
ERS-2 1995 P ATSR-2 D/N: 3, 35, or 336 days FL 
   GOME D/N: 35 days O3, NOx 
EarthProbe 1996 P TOMS D:1-2 days, N:N/A AI, O3 
ADEOS-1 1996 P POLDER-1 D:1-2 days, N:N/A AOD, FMF, Aexp 
TRMM  1997 I-35 VIRS D:1-2 days, N:1-2 days FL 
SPOT4 1998 P VGT1 D:1 day, N:1 day BA 
Terra 1999 P MODIS D:1-2 days, N:1-2 days FL, FRP, BA, 

AOD, Aexp (over 
water), FMF 

  P MISR D:8 days, N:N/A PH, AOD, Atype, 
Aexp, FMF 

  P MOPITT D:3-5 days, N:3-5 days CO, CH4 
  P ASTER D:16 days, N:16 days FL, BA 
BIRD 2001 P HSRS N/A FL, FRP 
Odin 2001 P 0SIRIS  PVP, NO2, O3 
ADEOS-2 2002 P POLDER-2 D:1-2 days, N:N/A AOD, FMF, Aexp 
SPOT5 2002 P VGT2 D:1 day, N:1 day BA 
Aqua 2002 P MODIS D:1-2 days, N:1-2 days FL, FRP, BA, 

AOD 
  P AIRS D:1-2 days, N:1-2 days CO, CO2, CH4 
Envisat 2002 P SCIAMACHY  D:1-2 days, N:N/A CO, CO2, CH4, 

HCHO, O3 
   MERIS D:2-3 days, N:N/A AOD 
ICESat 2003  GLAS N/A PTH, PVP 
MSG 2004 G SEVIRI D:15 min, N:15 min FL, FRP 
Aura 2004 P OMI D:1-2 days, N:N/A AI, AOD, AAOD, 

NO2, O3 
  P TES D:16 days, N:16 days CO, CH4 
Parasol 2006 P POLDER D:1-2 days, N:N/A AOD, FMF, Aexp 
MetOp 2006 P IASI D:1 day, N:1 day CO, CH4 
Calipso 2006 P CALIOP N/A PVP, AOD 

*For a series of similar satellites, only the launch date of the first one in the series is shown. 

**P= polar orbiters; G = Geostationary; I-35= orbit inclined at 35 degrees from equatorial plane  

~Revisit Frequency represents the time interval between which the same spot on earth is observed consecutive times. 
Only active sensors or passive sensors with infrared (IR) capability have been identified with Nighttime (N:) revisit. 

N/A = Not Applicable or Not Available. 
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Table	
  3:	
  Acronyms	
  of	
  Satellites	
  and	
  Sensors	
  described	
  in	
  this	
  paper,	
  preceded	
  by	
  those	
  of	
  the	
  Agencies	
  that	
  
operate	
  these	
  Satellites	
  and	
  the	
  respective	
  Countries	
  or	
  Regions	
  they	
  belong	
  to.	
  
Agency Description Country/Region 
CNES Centre Nationale d'Etudes Spatiales France 
CSA Canadian Space Agency Canada 
ESA European Space Agency Europe 
JAXA Japanese Aerospace Exploration Agency Japan 
NASA National Aeronautics and Space Administration USA 
NOAA National Oceanic and Atmospheric Administration USA 
USGS United States Geological Surveys USA 
Satellite Description Agency 
ADEOS Advanced Earth Observing Satellite (I and II) JAXA 
Aqua N/A* NASA 
Aura N/A NASA 
CALIPSO Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations NASA, CNES 
DMSP Defense Meteorological Satellite Program NOAA 
Envisat Environmental Satellite ESA 
EP Earth Probe NASA 
ERS-2 Second European Remote-Sensing Satellite ESA 
GOES Geostationary Operational Environmental Satellite (series 1 - 15) NOAA 
ICESat Ice, Clouds, and Land Elevation Satellite NASA 
ICESat Ice, Cloud,and land Elevation Satellite NASA 
Landsat N/A (series 1 to 7, except 6) USGS 
Meteor-3 N/A NASA 
MetOp Meteorological Operational satellite programme ESA 
MSG Meteosat Second Generation ESA 
Nimbus-7 N/A NASA 
NOAA National Oceanic and Atmospheric Administration (series 1 - 19) NOAA 
Odin N/A CSA 

PARASOL 
Polarization and Anisotropy of Reflectance for Atmospheric Science coupled with 
Observations from a Lidar CNES 

SeaStar N/A NASA 
Terra N/A NASA 
TIROS-N Television InfraRed Operational Satellite - Next-generation NASA 
TRMM Tropical Rainfall Measuring Mission NASA 
UARS Upper Atmosphere Research Satellite NASA 
Sensor Description Satellite 
AIRS Atmospheric Infrared Sounder Aqua 
AMSR-E Advanced Microwave Scanning Radiometer - Earth Observing System Aqua 
AMSU Advanced Microwave Sounding Unit Aqua 
ASTER Advanced Spaceborne Thermal Emission and Reflection radiometer Terra 
ATSR Along Track Scanning Radiometer ERS-2 
AVHRR Advanced Very High Resolution Radiometer NOAA 
CALIOP Cloud and Aerosol Lidar with Orthogonal Polarization CALIPSO 
ETM+ Enhanced Thematic Mapper Landsat 
ETM+ Enhanced Thematic Mapper plus Landsat 
GLAS Geoscience Laser Altimeter System  ICESat 
GOME Global Ozone Monitoring Experiment ERS 
GOME-2 Global Ozone Monitoring Experiment-2  MetOp 
IASI Infrared Atmospheric Sounding Interferometer MetOp 
IMG Imager GOES 
MERIS Medium Resolution Imaging Spectrometer Envisat 
MISR Multi-angle Imaging Spectroradiometer Terra 
MODIS Moderate-resolution Imaging Spectroradiometer Terra, Aqua 
MOPITT Measurements of Pollution in the Troposphere Terra 
MSS Multi-Spectral Scanner Landsat 
OMI Ozone Monitoring Instrument Aura 
OSIRIS Optical Spectrograph and Infra-Red Imaging System Odin 
POLDER Polarization and Directionality of the Earth Reflectances ADEOS, Parasol 
SCIAMACHY SCanning Imaging Absorption SpectroMeter for Atmospheric ChartographY Envisat 
SeaWiFS Sea-viewing Wide Field-of-view Sensors SeaStar 
SEVIRI Spinning Enhanced Visible and Infrared Imager MSG 
TES Tropospheric Emission Spectrometer Aura 
TM Thematic Mapper Landsat 
TOMS Total Ozone Mapping Spectrometer Nimbus-7, Meteor-3, EP 
VIIRS Visible Infrared Imager Radiometer Suite NPP 
VIRS Visible and Infrared Scanner TRMM 
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Table 4a: Satellite measurements of variables related to fires and burned surfaces. 
See acronyms in Tables 1 and 3. 
Variable Sensor (Satellites) Nominal 

Spatial Res 
Spatial 

Coverage 
Data Period* References**  

Fire 
Location 
(FL) 

OLS (DMSP) 2.7 x 2.7 km  1979-1992 Cahoon et al. (1992a,b) 

 AVHRR (TIROS-
N/NOAA-6 ..NOAA-19) 

1 x 1 km Global 1992- Setzer et al. (1996); 
Steyaert et al. (1997) 

 MODIS (Terra & Aqua) 1 x 1 km Global 2000-Present  Kaufman et al. (1998a); 
Justice et al. (2002); Giglio 

et al. (2003a) 
 VIRS (TRMM) 2.4 x 2.4 km 40 N - 40 S 1997- Giglio et al. (2003b) 
 ASTER (Terra) 0.03 x 0.03 km Global 2000-Present Morisette et al. (2005a,b) 

 HSRS (BIRD) 0.37 x 0.37 km   Wooster et al. (2003) 
 IMG (GOES) 4 x 4 km North and 

South 
America 

 Prins and Menzel (1992); 

 SEVIRI (MSG) 3 x 3 km Africa & 
Europe 

2004-Present Roberts et al. (2005); 

      
Fire 
Radiative 
Power 
(FRP) 

MODIS (Terra & Aqua) 1 x 1 km Global 2000-Present  Kaufman et al. (1998a); 
Justice et al. (2002); Giglio 
et al. (2003a); Ichoku et al. 

(2008a)  

 HSRS (BIRD) 0.37 x 0.37 km   Wooster et al. (2003) 
 SEVIRI (MSG) 3 x 3 km Africa & 

Europe 
2004-Present Roberts et al. (2005) 

      
      
Fire Area 
and 
Temperature 
(FA, FT) 

IMG (GOES) 4 x 4 km North and 
South 

America 

  

 ASTER (Terra) 0.03 x 0.03 km Global 2000-Present Eckmann et al., 2009 
      
      
Burned 
Area (BA) 

MODIS (Terra & Aqua) 0.5 x 0.5 km Global 2000-Present  Roy et al. (2005, 2008a), 
Roy and Boschetti (2009). 

 VEG (SPOT) 1 x 1 km Global 2000-Present  Tansey et al. (2004) 
      
      
Burn 
Severity 
(BS) 

TM, ETM (Landsat) 0.03 x 0.03 km Global 1972-Present French et al. (2008); 
Verbyla et al. (2008). 

            
	
  
*Data	
  period	
  is	
  the	
  estimated	
  period	
  of	
  data	
  coverage	
  based	
  on	
  available	
  publication	
  or	
  web	
  references,	
  but	
  does	
  
not	
  verify	
  whether	
  or	
  not	
  the	
  data	
  is	
  actually	
  available.	
  
**References	
  cited	
  here	
  are	
  just	
  examples,	
  and	
  do	
  not	
  represent	
  endorsement	
  of	
  validity.	
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Table 4b: Satellite measurements of variables related to smoke plumes, aerosol particles, and trace gases. 
For aerosols, only AI and AOD are shown to save space. See Acronyms in Tables 1 and 3. 
Variable Sensor (Satellites) Nominal Spatial 

Res 
Spatial 

Coverage 
Data Period* References**  

PH MISR (Terra) 1.1 x 1.1 km Global 2000 - Present Kahn et al. (2007; 2008); 
Val Martin et al., (2010) 

PVP CALIOP (Calipso) N/A Global 
(curtains) 

2006 - Present Winker et al. (2007, 2009) 

      
AI OMI (Aura) 13 x 24 km Global 2004 -Present Torres et al. (2010) 
 TOMS (Nimbus-7, Meteor-

3, Earth Probe) 
50 x 50 km Global 1978 - Present Hsu et al. (1996, 1999) 

      
AOD MODIS (Terra and Aqua) 10 x 10 km Global 2000 - Present Remer et al. (2005, 2008), 

Levy et al. (2010). 
 MISR (Terra) 18 x 18 km Global 2000 - Present Kahn et al. (2009; 2010) 
 OMI (Aura) 13 x 24 km Global 2004 -Present Torres et al. (2010) 
 POLDER (ADEOS1, 

ADEOS2, PARASOL) 
19 x 19 km Global 

(Ocean only) 
  1996 -2010 Tanre et al. (2011) 

 SEAWiFS (SeaStar) 4 x 4 km Global   1997 - 2010  
 AVHRR (NOAA) 8 x 8 km Global 

(Ocean only) 
1988 - Present Ignatov et al. (2004); 

Mishchenko et al (1999) 
 SEVIRI (MSG) 3 x 3 km Africa, 

Europe 
 Popp et al. (2007) 

 IMG (GOES) 4 x 4 km N/S America  Zhang et al. (2001) 
 CALIOP (Calipso) 5 x 5 km Global 

(curtains) 
2006 - Present Winker et al., (2007, 2009) 

      
CO2 AIRS (Aqua) 90 x 90 km Global 2002 - Present Chahine et al. (2008) 
 SCIAMACHY (Envisat) 30 x 120 km Global 2003 - Present Buchwitz et al. (2005a,b, 

2006) 
      
CO MOPITT (Terra) 22 km x 22 km Global  2000 - Present Edwards et al. (2004) 
 AIRS (Aqua) 50 x 50 km Global 2002 - Present McMillan et al. (2005) 
 TES (Aura) 5 x 8 km Global 2004 - Present Lopez et al. (2008) 
 SCIAMACHY (Envisat) 30 x 120 km Global 2003 - Present Buchwitz et al. (2005a,b, 

2006) 
      
CH4 MOPITT (Terra) 22 km x 22 km Global 2000 - Present Edwards et al. (2004) 
 AIRS (Aqua) 50 x 50 km Global 2002 - Present Xiong et al. (2008) 
 TES (Aura) 5 x 8 km Global 2004 - Present  
 SCIAMACHY (Envisat) 30 x 120 km Global 2003 - Present Buchwitz et al. (2005a,b, 

2006) 
      
NOx GOME (ERS-2) 40 km x 40 km  Global 1995 - Present Martin et al. (2003, 2004) 
 SCIAMACHY (Envisat) 30 x 120 km Global 2003 - Present van der A et al. (2008) 
      
HCHO OMI (Aura) 13 x 24 km Global 2004 -Present Millet et al. (2008) 
 GOME (ERS-2) 40 km x 40 km  Global 1995 - Present Martin et al. (2004) 
 SCIAMACHY (Envisat) 30 x 60 km Global 2003 - Present Dufour et al. (2009) 
      
O3 OMI (Aura) 13 x 24 km Global 2004 -Present McPeters et al. (2008) 
 TOMS (Nimbus-7, Meteor-

3, Earth Probe) 
50 x 50 km Global 1978 - Present Bhartia (2007) 

 SCIAMACHY (Envisat) 30 x 120 km Global 2002 - Present Brinksma et al. (2006) 
 TES (Aura) 5 x 8 km Global 2004 - Present Bowman et al. (2002) 
 GOME (ERS-2) 40 km x 40 km  Global 1995 - Present Liu et al. (2006) 
           
*Data period is the estimated period of data coverage based on available publication or web references, but does not verify whether or 
not the data is actually available. 
**References cited here are just examples, and do not represent endorsement of validity. 
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Table 5: Relationship between model inputs and the Closest Satellite Equivalent (CSE) measurements 
Model Input Typical 

Model 
Units 

Closest Satellite 
Equivalent 

Typical 
Satellite 
Units 

Comments 

     
Active Fire     
Radiant Energy Flux Watts Fire radiative power Watts Underestimated in cloudy 

and heavy smoke areas 
Sensible heat Joules N/A   
Latent heat Joules N/A   
Fire size km2 Fire (pixel) counts unitless Only proxies 
Fire rate of spread m/min N/A   
Fire duration  Fire persistence  Only in some areas from 

Geostationary satellites 
     
Fuel and Burned surface    
Burned area km2 Burned area km2  
Biomass Density g/m2 Vegetation Indices unitless Only proxies 
Fuel Type category  

Satellite-derived 
vegetation/landcover 
maps 

  

Fuel Load g/m2 N/A   
Fuel moisture content % N/A   
Burn efficiency ratio Burn severity  Only proxies 
Calorific heat content kJ/kg N/A   
     
Smoke Plume      
Plume Injection Height m Near-source Plume 

height 
m Only from MISR 

Plume Vertical Profile  Plume curtain slice  Only from lidar; mainly 
downwind of source 

     
Emissions     
Emission rate kg/s Emission rate (based 

on instantaneous near-
source plume AOD) 

kg/s Still being investigated 
(requires model to 
interpret) 
 

Emission factor g/kg Emission coefficient 
(based on FRP) 

kg/MJ Still being investigated 
(e.g., Ichoku and 
Kaufman, 2005) 

          
N/A = Not available or not applicable 
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Figures 
 

 
Fig. 1: Global ecosystem map derived from MODIS based on the International 
Geosphere/Biosphere Program (IGBP) classification scheme. 

 
 

 



 59	
  

 

 

Fig. 2: Fire detection from Aqua MODIS for July 2011 overlaid on a composited surface 
reflectance map (also from MODIS), showing the fire radiative power (FRP) value 
ranges for the individual fire pixels. Compared to the map scale, the fire pixels are 
indicated with relatively large dots to enhance visualization, causing substantial fire-
pixel overlap in certain regions. 
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Figure 3. Top: Global daily total burned area in 2006 from three different products: mod1 = MODIS fire 
count based estimate using combined Terra (MOD14) and Aqua (MYD14) fire counts; mc45 = burned area 
product (MCD45, Roy et al., 2008); and g31d (GFED version 3 daily product). Bottom: Global daily total 
burned dry mass in 2006 from different combination of burned area as shown in the top panel, the available 
biomass (glc = Global Land Change dataset, asm = A. Soja (2004) medium fire intensity, and g3d = GFED 
v3 daily) (from Petrenko et al., 2011). 
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Figure 4. Comparisons of biomass burning AOD from MODIS retrievals and GOCART simulations using 
different dry mass burned (see bottom panel in Figure 3) and emission factors (go1 = emission factors of 
BC, OC and SO2 used in current GOCART model, see Chin et al., 2004; GFED-3 = emission factors from 
Andrea and Merlet 2001 used in GFED v3) over the north of Lake Baikal in Russia in 2006-07-20. The last 
panel shows the probability distribution function of AOD distributions in the regions (from Petrenko et al., 
2011). 
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Figure 5. Schematic of an inverse modeling processes (from Dubovik et al., 2008). 
 
 
 
	
  
 


