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Annual Influenza Burden
Worldwide: 5 million severe illnesses 

and 500,000 deaths
United States: 200,000 hospitalization 

and >30,000 deaths. Estimated 
economic burden ~$87.1 billion
(Molinari et al., 2007)

Table 1. Factors Implicated in Influenza Transmission

Process Factors Relationship

Virus 
Survivorship

Temperature Inverse

Humidity Inverse

Solar irradiance Inverse

Transmission 
Efficiency

Temperature Inverse

Humidity Inverse

Rainfall Proportional

ENSO Proportional

Host 
susceptibility

Sunlight Inverse

Nutrition Varies

1. INTRODUCTION

Objective
 To understand how climactic and 

environmental factors affect the efficiency 
of influenza transmission in different parts 
of the world so as to enhance multilateral 
efforts for prevention and control 

Study Area
 Here we present current findings from 

the first phase of our study where we 
work with countries in North and 
Central America, and Northern 
Europe.  
 Our results in these regions 

encompass tropical, sub-tropical and 
temperate climate 

 This global characterization should enable us 
to develop better ability to forecast influenza 
activity worldwide

Type	equation	here.C(a

2. APPROACH

Figure 1. Overall approach to modeling influenza using 
environmental and climatic variables

3. RESULTS

Methods
 Autoregressive Integrated Moving Average (ARIMA) 
 Accounts for seasonality and autocorrelation property
 General formulation: Let y(t) be the response variable, 

and z(t) = y(t) – y(t‐1) – …. – y(t – d)
Then, z(t) – ф1z(t – 1) – ф2z(t – 2) – … – фpz(t – p) 

= μ – θ1Ɛ(t – 1) – θ2Ɛ (t – 2) – … – θpƐ(t – p) 

 Neural Network (Figure 2) 
 Artificial Intelligence method that mimic the functioning 

of the brain
 Capable of capturing nonlinear relationship

Figure 2. Neural Network Schematic

 ARIMA  model performs better for Maricopa County – previous cases are needed, 
suggesting the role of contact transmission
 NN model shows that ~60% of influenza variability in the US regions can be 

accounted by meteorological factors

Input
RMSE 

(Fit/Pred)
R2

(Fit/Pred)

ARIMAMean Dew Pt (4) 0.046/0.022 0.311/0.795

NN
TMAX (1), Rain 
(3), TMIN (2) 0.044/0.0036 0.731/0.584

United States – New York City (NY) and Maricopa County (Arizona)
 Influenza data was obtained from the respective Public Health website

Input
RMSE 

(Fit/Pred)
R2

(Fit/Pred)

ARIMA RHMAX (3), LST(3) 0.575/0.5493 0.911/0.941

NN
RHMIN(1),

TEMP(4), SOLAR(4) 0.608/1.089 0.820/0.754

Belgium
 Influenza data was obtained from the European Centre for Disease Control and 

Prevention database

Guatemala
 Data was obtained from CDC Regional Office for Central America and Panama
 The relationship between influenza cases were assessed using cross-correlation 

function (CCF)

Variable Lag

Relative Humidity 2

Mean Temperature 3

Sun 0

Wavelet
 Decompose time series signals into time-

frequency space using ‘mother’ wavelet 
signal, such as Morlet wavelet (Figure 3)

Figure 3. Wavelet transform schematic

Figure 3. Neural Network (NN) and ARIMA outputs for New York City and Maricopa County

Figure 4. Neural Network (NN) output for 
Belgium. Inputs are TRMM(3), LSTDAY(1), 
TEMP(2). Correlation between the NN 
output and the data is 0.576 for the fit 
dataset and 0.4822 for validation dataset.

Figure 5. (Top) Time series for  Land 
Surface Temperature  (LST) day. (Bottom) 
Cross wavelet between LSTDAY  and the 
influenza counts. Arrows represent the 
phase relationships (in-phase pointing right 
and anti-phase pointing left)  
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Morlet wavelet

Guatemala (Cont’d)

 Pre-whitening was applied before CCF was calculated
 The table shows variables (and the corresponding lag) 

that were found to be significantly associated with 
influenza 
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