Towards Global Characterization of Environmental & **Climatic Determinants for Seasonal Influenza**

Radina P. Soebiyanto^{1,2}, Nivaldo P. Linares³, Luis V. Bonilla^{3,4}, Jorge Jara^{3,4}, Joshua A. Mott⁵, Pernille Jorgensen⁵, Marc-Alain Widdowson⁶, Richard Kiang^{1*}

¹NASA Goddard Space Flight Ctr., Greenbelt,MD, USA. ²Universities Space Research Assoc., Columbia,MD, USA. ³CDC Regional Office for Central America & Panama, Guatemala. ⁴Centro de Estudio en Salud, Universidad del Valle de Guatemala, Guatemala. ⁵WHO Reg. Office for Europe, Copenhagen, Denmark. ⁵CDC Influenza Division, Atlanta, GA, USA.

Email: radina.p.soebiyanto@nasa.gov, richard.kiang@nasa.gov

1. INTRODUCTION							
Annual Influenza Burden Worldwide: 5 million severe illnesses and 500,000 deaths United States: 200,000 hospitalization and >30,000 deaths. Estimated economic burden ~\$87.1 billion (Molinari et al., 2007)	Table 1. Factors	Implicated in Influe	enza Transmission	Objective		Study Area	
	Process Factors		Relationship	 To understand how climactic and 		Here we present current findings from	
	Virus Survivorship	Temperature	Inverse	environmental factors affect the efficiency of influenza transmission in different parts of the world so as to enhance multilateral	ho first phase of our study whore we		
		Humidity	Inverse		iency	work with countries in North and	
		Solar irradiance	Inverse		Work with countries in North and		
	Transmission Efficiency	Temperature	Inverse		Central America, and Northern		
		Humidity	Inverse efforts for prevention an			Europe.	
		Rainfall	Proportional	 This global characterization should enable us to develop better ability to forecast influenza 		 Our results in these regions encompass tropical, sub-tropical and 	
		ENSO	Proportional				
	Host	Sunlight	Inverse	activity worldwide		temperate climate	
	susceptibility	Nutrition	Varies	,			
2. APPROACH							
Methods							
Figure 1. Overall approach to modeling influenza using				arated Moving Average (ARIMA)	Wavelet		
environmental and climatic variables			Accounts for seasonality and autocorrelation property Decompose time series signals into time-				
NASA's Earth			- Accounts for seasonancy and autoconcentron property				
Observation Satellite Multi-hand processing center	Multidisciplinary Final Output: Environmental dependency, processing center climate-based influenza forecast		• General formulation: Let y(t) be the response variable,			signal such as Morlet wavelet (Figure 3)	
images		an	and $z(t) = y(t) - y(t-1) - \dots - y(t-d)$		signal, such as monet wavelet (Figure 5)		
		1921 64267 9754	ten, $z(t) - \phi_1 z(t)$	$(-1) - \phi_2 z(t-2) \phi_p z(t-p)$	Morlet	t wavelet	
Multi-temporal earth	*	*	= μ	$-\theta_1 \mathcal{E}(t-1) - \theta_2 \mathcal{E}(t-2) - \dots - \theta_p \mathcal{E}(t-p)$	**	In the state of the second	
Terma stelling that provides data such as Land Surface Temperature (SD), vegetation index, etc.	Varification	rification 8	- Nourol Notwork (Figure 2)				
	alibration	/alidation		nce method that mimic the functioning			
		• Ar	tificial Intellige				
	Mathematical & Statistical	of	the brain				
W Surface Temperature (MOD11C1)	Modeling	 Ca 	pable of captu	ring nonlinear relationship		March 1 and 1 and 1 and 1 and 1	

Figure 3. Wavelet transform schematic

Lag

2

3

0

3. RESULTS

Pre-whitening was applied before CCF was calculated • The table shows variables (and the corresponding lag) that were found to be significantly associated with

 Influenza data was obtained from the European Centre for Disease Control and Prevention database LST DAT

Figure 4. Neural Network (NN) output for Belgium. Inputs are TRMM(3), LSTDAY(1), TEMP(2). Correlation between the NN output and the data is 0.576 for the fit dataset and 0.4822 for validation dataset.

Figure 5. (Top) Time series for Land Surface Temperature (LST) day. (Bottom) Cross wavelet between LSTDAY and the influenza counts. Arrows represent the phase relationships (in-phase pointing right and anti-phase pointing left)

Influenza data was obtained from the respective Public Health website Figure 3. Neural Network (NN) and ARIMA outputs for New York City and Maricopa County

United States - New York City (NY) and Maricopa County (Arizona)

- ARIMA model performs better for Maricopa County previous cases are needed. suggesting the role of contact transmission
- NN model shows that ~60% of influenza variability in the US regions can be accounted by meteorological factors

Guatemala

- Data was obtained from CDC Regional Office for Central America and Panama
- The relationship between influenza cases were assessed using cross-correlation function (CCF)
- ACKNOWLEDGMENT

This work is supported by NASA Applied Science Public Health Program and CDC Influenza Division. This study has also been included as part of Group on Earth Observations (GEO) task

Variable **Relative Humidity** Mean Temperature Sun

influenza

Belgium