

Background

- NTP fuels under development
 - W-60vol%UO₂ CERMET

- Minimize erosion
 - Prevent H₂ propellant at ~3000 K from reducing UO₂ fuel kernels
 - Requires each fuel kernel to be clad in tungsten
- Coat spherical dUO₂ powders with 40 vol% W
- Coated spherical powders advantageous for HIP
 - Higher powder packing %TD
 - Minimize powder segregation

Problem & Objectives

- WF₆ process
 - Residual F exacerbates fuel loss
 - HF bi-product
- WCI₆ process
 - Minimal Cl contamination
 - More complex than WF₆ process (solid-to-vapor vs. gaseous reagent)
- Vendor cost to coat dUO₂ excessive
- Develop a lab-scale prototype that utilizes the WCl₆ process that enables cost effective coating of spherical dUO₂ powders

SEM Micrograph of spherical uncoated particles

SEM micrographs of spherical coated particles

Apparatus & Procedure

National Aeronautics and Space Administration

WCl₆ process

$$WCl_6 + 3H_2 \xrightarrow{930^{\circ}C} W + 6HCl$$

- Fluidized bed reactor (H₂/Ar 10:1 ratio)
- Raining feed system (fill and drain powder hoppers)
- 3rd generation system (25 g quantities)

CVD System

CVD System Schematic

Iterative Development

Reactor Design Evolution

Sublimer Design Evolution

System Characterization Trials

- Minimum fluidization flow rate
 - Fluidization flow rate varies as particle density increases with increasing coating thickness
- Fluidization as a function of powder size

Batch	Powder Size (-/+ μm)	H ₂ Mass Flow Rate (SLPM)		Ar Mass Flow Rate (SLPM)		Pressure (psig)
		25 C	930 C	25 C	930 C	(haig)
1	-106/+90	20		2		5
2	-90 / +75					
3	-75 / +63	15	8	1.5	1	5
4	-63 / +53	15	8	1.5	1	
5	-53 / +45	15		1.5		5
6	-45 / +38					
7	-38	10		1		5

- Fluidization as a function of furnace temperature
- Powder column height as a function of flow rate and temperature
- Reactor temperature profile as a function of flow rate
- Sublimer temperature profile as a function of flow rate
- Coated Al₂O₃ substrates and ZrO₂ spherical powders

Pre-CVD Al₂O₃ Substrate

Sublimer Temp Profile Measurement

Reactor Temp Profile Measurement

National Aeronautics and Space Administration

CVD Operations

Powder Coating Trial Results

SEM micrographs of W coating on ZrO2 substrate (a) 150x (b) 2000x (c) 7000x

EDS Phase Maps

EDS spectra

3rd Generation CVD System

National Aeronautics and Space Administration

Spherical ZrO2 Powder (-53/+45 µm) before and after fluidization at room temperature

All Pyrex-Quartz CVD System Design Concept

Conclusions

- Demonstrated viability and utilization of:
 - Fluidized powder bed
 - WCl₆ CVD process
 - Coated spherical particles with tungsten
- The highly corrosive nature of the WCl₆ solid reagent limits material of construction
- Indications that identifying optimized process variables with require substantial effort and will likely vary with changes in fuel requirements

Future Work

- Optimize process variables in order to produce coating properties that meet requirements
- Characterize coatings as a function of substrate microstructure and process variables
- Design next-generation system to process larger quantities of power required for engine scale fuel fabrication

Acknowledgements

- Funding was provided by the "Advanced Exploration Systems – Nuclear Cryogenic Propulsion Stage" project.
- The authors would like to thank Grace Belancik, Mike Houts, Roger Harper, Jeff Quick, Gabriel Putnam, Jim Martin of NASA MSFC and Gene Nelson of AG Scientific Glass, Inc.
- The opinions expressed in this presentation are those of the author and do not necessary reflect the views of NASA or any NASA Project.