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Abstract

This report describes a novel test generation technique for distributed systems. Formal models
and formal verification tools, specifically the Symbolic Analysis Laboratory (SAL) tool-suite from
SRI International (SRI), a nonprofit research institute, are used to generate concurrent test vectors
for distributed systems. These are initially within an informal test validation context and later
extended to achieve full modified condition decision coverage (MC/DC) of the TTEthernet protocol
operating within a system-centric context.
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1 Introduction

This document details work performed under NASA Task Order NNL10AB32T, Validation and
Verification of Safety-Critical Integrated Distributed Systems — Area 2.

This document is intended to satisfy the requirements for deliverable 5.1.10 under Task 4.1.2.1.
It accompanies and documents Deliverable 5.1.11, which is a set of system models in electronic
form (e.g., sal-atg files and the corresponding trace outputs).

1.1 Scope

This report documents a study that investigates the feasibility of generating system level test vectors
for a distributed system, from a formal model of the system. The study is based on the TTEthernet
communication protocol [1], specifically the TTEthernet start-up and integration protocol. This
document assumes that the reader is familiar with the TTEthernet protocol. The reader is advised
to read the TTEthernet protocol standard [I] before reading this document. This document does
not re-iterate the content of the standard.

1.2 Background and Motivation

During TTEthernet protocol development, the development team made extensive use of model
checking technology using the Symbolic Analysis Laboratory (SAL) tool suite from SRI. Before
implementing any protocol code, formal models of the protocol core TTEthernet startup and
synchronization services were implemented and validated using the SAL tool-suite. The in-line
application of formal methods within the development cycle introduced significant benefits to the
TTEthernet program.

Formalizing the protocol definition in a form suitable for capture within the SAL tool-chain
made it possible to detect and address behavioral ambiguities early in the life cycle. The associated
formalization of the protocol fault model also fostered significant dialog between the protocol and
system design teams. This lead to early agreement and clarification of the expected protocol
functionality and its associated services.

Validating the protocol using model checking technology resulted in the detection and removal
of erroneous edge-case scenarios. Early modeling of the protocol, combined with the feedback in
the form of simulation and model checking counter example traces, also enabled the design team
to develop an early working intuition with respect to the complex emergent interactions of the
distributed protocol behavior. This intuition proved invaluable when the first protocol hardware
implementations were debugged in the development laboratory.

Although the TTEthernet formal models were greatly beneficial during early protocol definition,
they were not used as part of a formal program verification. The models were utilized by the
TTEthernet risk mitigation program, where limited fault-injection testing was performed to validate
the behavior of early protocol prototype hardware against the protocol model. Formal equivalence
testing between the hardware and the SAL model was not formally performed.

The formal testing and verification of TTEthernet consisted of two parts that treated the
network switch and end-system as separate entities. Each component was individually verified using
directed requirements driven test campaigns together with System Verilog-constrained random
based testing. Neither of these formal verification activities targeted the integrated system behavior
of all the TTEthernet components. [

! This was was largely due to the overhead associated with the verification environment that limited the simulation
of large system configurations with multiple end-system and switching components



To explore the integrated system behavior, a network integration lab (NIL) was developed. The
NIL included a large network test bed of 25+ end-systems and 17+ switches instrumented for fault
injection. The emphasis within the NIL environment was system integration and the validation of
higher level system properties. Therefore, the NIL based testing did not specifically target protocol
branch coverage. The complexity of the TTEthernet protocol also complicated the NIL testing, as
personnel faced a steep learning curve before they could generate or parse system test scenarios
and results.

From this experience of developing TTEthernet, it became apparent that greater value may be
gained from the initial formal modeling effort. If the formal model could be used as a reference for
expected system behavior, it may assist the training and debugging activities of the NIL personnel.
In addition, if the formal model could be used to generate integrated system level test scenarios,
it may mitigate some of the risks associated with the separation of switch and end-system test
campaigns that may miss subtle interactions among the distributed components.

Finally if the system level test generation scenarios could be restricted to remain consistent with
the underlying fault hypothesis of the core protocol, the execution of the system test campaign may
also be used to validate the protocol soundness. For example by presenting evidence that all of
the protocol logic is required and that extraneous logic is not present. This restriction prevents
artificial test scenarios from being used to justify coverage.

In the ideal scenario, an integrated system level test suite could be used to test the system-level
interaction of the core protocol logic using expected real-world system level scenarios. Ideally such
a test campaign could then be used to validate that the implemented protocol behavior matches
the assumed behavior of the formal model for each protocol decision point. For this reason, the
generation of formal protocol coverage tests using the model and comparison of the model-predicted
behavior with the implemented behavior was a highly desirable goal.

To achieve the model and hardware comparison, it is necessary to bridge the gap between
the abstract formal model and the lower level behavior of prototype hardware. In addition, since
SAL expertise is not common within product development groups, it was desired to support the
capability to quickly generate example scenarios from the model with minimal knowledge of SAL
syntax and tooling.

1.3 Tools

The research team reviewed the capabilities of other test generation tools to investigate whether
current tooling could meet the above criteria. In particular, the team reviewed the capabilities of the
Honeywell Integrated Lifecycle Tools & Environment (HiLiTE)tool-chain [2]. HiLiTE is a mature
and quantifiable tool that produces requirements-driven test vectors from Simulink and/or State-
flow models, nominally achieving in excess of 90% modified condition decision coverage (MC/DC)
structural coverage. Although the HiLiTE tool has proven to be highly capable, accommodating
very large and complex models, our review found that it it could not accommodate state concur-
rency, and therefore could not accommodate the distributed state of the TTEthernet components.

Therefore the sal-atg (SAL Automated Test Generation) tool chain from SRI was selected to
perform the test generation study. The models presented in this report have been developed using
the sal-atg tool. The version of the tool chain used was a pre-release candidate of SAL-3.1. It is
available for download at: http://sal.csl.sri.com.

The SAL-3.1 tool chain introduces a new capability which uses the Lingeling SAT-solver as a
backend to SAL. In our work,we found Lingeling presented significant performance improvements
over the Yices solver that is packaged with SAL. The majority of the work described in this report
uses the Lingeling tool chain that is available here: http://fmv.jku.at/lingeling.


http://sal.csl.sri.com
http://fmv.jku.at/lingeling

All tools were hosted on a 64-bit OpenSuse Linux System http://www.opensuse.org/en/. The
hardware system was configured with 12 Gigabytes of system RAM and at least 3 processing cores.

1.4 Report Overview and Structure

This report is organized into five sections, including this introduction. Section [2| presents the SAL
model for the TTEthernet startup protocol, extended with priorities. Section [3|discusses some early
proof and test scenario explorations that were performed on the extended model. Section [d] presents
the instrumentations used on the extended model to achieve MC/DC coverage and discusses test
findings. Section [5| presents our conclusions to date.


http://www.opensuse.org/en/
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Figure 1. Modeled TTEthernet system

2 TTEthernet Startup Model and Model Extensions

In TTEthernet, the physical components on the network can be classified into three types depend-
ing on their functionality: 1) synchronization clients are end-systems that use the synchronized
time-base to exchange information with other end-systems; 2) synchronization masters (SMs )are
end-systems that are responsible for maintaining a synchronized time-base between components (in
addition to exchanging information with other end-systems); and 3) compression masters (CMs)
are switches on the network that are responsible for collecting, combining/compressing, and re-
laying synchronization messages between SMs in addition to relaying information between the
end-systems.

Our work in modeling the behavior of the TTEthernet startup protocol was derived from the
initial TTEthernet formal modeling performed by Wilfried Steiner as part of the Complexity Man-
agement for Mixed-Criticality Systems (CoMMiCS) research fellowship at SRI. For background
context to the work presented in this section, refer to the CoMMics Deliverable [3].

The modeled system comprises six SMs and six CMs, arranged as shown in Figure[l] As part
of the model extension we implemented some changes to improve model scalability. One such
change was the modification of the mem2nat function. In the original model this was implemented
using an EXISTS clause in SAL. We replaced this implementation with a recursive definition. As
a result, we were able to scale the model from seven to twelve components. The model was
extended to incorporate new states, so end systems can power on and sleep and CMs can power
on late. Finally, the model was also extended to incorporate the TTEthernet-prioritized clock
synchronization mechanism. In the example system shown in Figure (1] a channel is made up of a
pair of CMs having different priorities. SM1, SM2, and SM3 have a priority of one, and are directly
connected to each of the CMs with priority 1 within the channels. Likewise, SM4, SM5, and SM6
have a priority of 2 and are directly connected to each of the CMs with Priority 2.



2.1 SAL Model Detailed Description

The model is made up of six modules:

e The synchronization master and compression master modules model the protocol state
machine for SM and CM, respectively. These state machines are described in detail in [1],
and the initial SAL-based formal specification for these state machines is detailed in [3].

e The priority_filter module models the priority filtering mechanism for SMs, identifying at
each step the set of messages to be delivered to an SM based on its priority. The SM priority
mechanism and corresponding modeling constructs are described in detail in Section

e The sm_cm_connections module models the connections between SMs and CMs, determining
at each step the messages to be delivered. Fault modeling for the TTEthernet system is also
implemented in this module.

e The test_generator module behaves like an observer of the system. It has complete knowl-
edge of the state of the system at any point in time. This module is used to guide the system
to specific states or to specify constraints on the behavior of the system.

e The cluster module integrates all these modules to create the system; it creates six in-
stances of synchronization master, compression master, and priority_filter modules,
and composes all the modules using the synchronous operator in SAL.

These modules are composed synchronously rather than asynchronously because of scalability
issues. We believe that the model is correct from the perspective of our test generation goals, since
the synchronous composition does not introduce any extraneous behavior in the protocol state
machine.

SM and CM power on: In the extended model, the test_generator module can force any SM
to be powered/re-powered or into a sleep state at any time. When powered/re-powered, the SM
resets its internal state so that all the internal variables are re-initialized. The test_generator
module can power-on any CM at any time, but it is prevented from forcing CMs into a sleep state.
These power-on capabilities were sufficient to exercise our test generation goals.

Fault modeling: The extended model considers two faulty channels that exhibit inconsistent
omissions — channel 1 and channel 2. Each CM in a faulty channel can choose to not com-
municate with any subset of the SMs directly connected to it. The subset can be chosen non-
deterministically. Note that if one of the CMs in the faulty channel breaks its connections with the
SMs, then the other CM also cannot communicate with those SMs. A CM can independently choose
to break either the outgoing or the incoming connection with any of the SMs directly connected to
it. The two CMs within any channel are always assumed to be connected with each other. E]

The SAL code for the outgoing connectivity between CMs is shown below. Identical code is
used for the incoming connectivity between CMs. CMs within a channel are always connected to
each other (e.g., CM1 and CM2), whereas CMs in different channels are never directly connected to
each other.

2For the SM and CM coverage test scenarios in which there are no priorities in the model, each channel logically
comprises of only one CM. The second CM is short-circuited so that there are direct connections between the first
CM and all the end-systems in the model.



before_clique_connectivity_CM_out_to_CM IN
{a: ARRAY TYPE_CM_ids OF ARRAY TYPE_CM_ids OF BOOLEAN |
a= [[i:TYPE_CM_ids] [[j:TYPE_CM_ids]
((i=1 OR i=2) AND (j=1 OR j=2)) OR
((i=3 OR i=4) AND (j=3 OR j=4)) OR
((i=5 OR i=6) AND (j=5 OR j=6))]]
s

The SAL code for the incoming connectivity between CMs and SMs is as shown below. Since
Channels 1 and 2 are faulty, the connection from CM1 and CM3 to SM1, SM2, and SM3 and the
connection from CM2 and CM4 to SM4, SM5, and SM6 are left unspecified. Since Channel 3 is not
faulty, the connection from CM5 to SM1, SM2, and SM3, and the connection from CM6 to SM4, SM5,
and SM6 are forced to be valid. The rest of the connections are forced to be invalid, since they do
not exist in our system.

before_clique_connectivity_CM_in_from_SM IN
{a: ARRAY TYPE_CM_ids OF ARRAY TYPE_SM_ids OF BOOLEAN |
FORALL (i: TYPE_CM_ids, j: TYPE_SM_ids):
((i=1 OR i=3) AND (j=1 OR j=2 OR j=3)) OR
((i=5) AND (j=1 OR j=2 OR j=3) AND alil[jl) OR
((i=2 OR i=4) AND (j=4 OR j=5 OR j=6)) OR
((i=6) AND (j=4 OR j=5 OR j=6) AND a[il[j]) OR
((i=1 OR i=3 OR i=5) AND (j=4 OR j=5 OR j=6) AND NOT al[il[jl) OR
((i=2 OR i=4 OR i=6) AND (j=1 OR j=2 OR j=3) AND NOT a[i][j])
+;

In these models, the dependence between connectivity and CM or SM state has been abstracted.
That is, the connectivity between a CM and an SM depends only on the existence of a path between
those two components, possibly through other components, but does not depend on whether any
of the components in the path are switched off. We can use the same connectivity module for both
the priority scenarios—one has only one priority level and CM2, CM4, and CM6 are switched off; the
other has two priority levels and all CMs are powered on. For better understanding of our fault
assumptions and connectivity between CMs and SMs, consider the connectivity scenario shown in
Figure [2| As shown, CM2, CM4, and CM6 are switched off, CM1 can communicate only with SM2, and
CM3 can communicate only with SM3, while CM5 can communicate with every SM; even though CM6
is switched off.

In these models both the high integrity case and the standard integrity case are presented.

2.2 Adding Priorities to the Startup Model

This section describes how priorities were modeled in SMs and CMs using SAL and discusses how
the behavior of the prioritized TTEthernet model accurately represents the hardware.

CM use of priorities in TTEthernet is straightforward; each CM has a pre-defined priority and
responds only to synchronization messages from SMs that are sent with that priority. The CM
ignores all other synchronization messages.

Each SM has a priority filter that sits between the end system and the incoming connections.
The filter is configured to power on with a pre-defined default priority value. All synchronization
messages sent by the SM use this default value for their priority. The filter can receive incoming
messages at a priority level that is higher than or equal to the current priority of the SM. This
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Figure 2. TTEthernet system connectivity

current priority is initialized to the default value at power on. Once an incoming message is
accepted by the filter, the current priority of the SM is updated to be equal to that of the accepted
message. The current priority is reset to the lowest priority value in the system if no incoming
synchronization message passes the filter for a pre-defined timeout interval, denoted as priority_-
fallback_cycles in the TTEthernet Specification [I]. Note that it is possible for the current
priority value of an SM to be lower than its default priority value at certain time instants.

The protocol specification suggests that the priority filter may be configured in either au-
tonomous or host-interactive mode. In autonomous mode, the filter automatically boosts the
end-system priority by accepting higher priority synchronization messages as described above. In
host-interactive mode, the filter boosts the priority and accepts higher priority messages only after
the end-system acknowledges its request for the same. In the models presented here, only the
autonomous mode of operation for the priority filter has been considered.

One of the challenges in modeling a TTEthernet prioritization scheme using SAL was to develop
an abstract model of the protocol, while at the same time ensuring that the model accurately
represents the behavior of the hardware. One abstraction technique that we adopted is the use
of transparent messages being sent from CMs to SMs. Each transparent message abstracts a
sequentialized, almost simultaneous, transmission from a CM as a parallel transmission. This
abstraction is necessary due to the granularity of the simulation step in the model.

In hardware, a CM can transmit one or more messages almost simultaneously to the SMs. At
most, these synchronization messages include one CS (coldstart), one CA (coldstart ack), and one
IN (integration) for each integration cycle. That is, at most (number of integration cycles + 2)
messages can be transmitted by a CM almost simultaneously. For background context on these
messages, refer to the aforementioned protocol standard.

Although this abstraction simplifies the model, it does not capture the impact of non-concurrent
reception of these messages by the SMs. In hardware, since these messages are transmitted sequen-
tially, they are also received and processed sequentially by the SMs. Further, such a simultaneous
transmission also leads to non-determinism in the reception order; due to the error term in the
permanence points in time in TTEthernet. Different SMs may receive and process these messages
in a different order. To accurately capture the behavior of TTEthernet startup protocol, this
non-determinism must be explicitly captured in the SM state machine of the model.

In the model, the non-determinism in the reception order of CA or CS messages from different



Messages received \ Constraints on priority | Message to be processed

only IN inp > csp & iny, > cay IN
only CS csp > cap & csp > iny, -
only CA cap > iny, & cap > csp CA
IN & CS iny > cay || csp > cay IN
IN & CA iny > csp || cap > csp CA
CA & CS cap > iny || csp > iny, CA or CS
IN & CA & CS true CA or CS

Table 1. Non-deterministic message reception in states that ignore CS messages

CMs need not be considered, because SMs process these messages independently of how many
are received. The end result of processing is that one or more CA or CS messages depend only
on the current state of the SM and does not depend on the number of such messages received.
Our only concern is whether the SM received any CA or CS message at a particular instant, so
we consider only the highest priority CA or CS message. For IN messages however, the number
of messages received has an impact on the SM because it uses the membership vectors of all the
received IN messages to make a decision. For example, if two SMs in the SM_SYNC state receive
different subsets of IN messages, then, depending on the membership vectors of these messages,
each SM can independently transition either to the SM_STABLE or the SM_UNSYNC state. Therefore,
if completeness is desired, the non-determinism in the reception order of IN messages should be
captured in the model. However, capturing this non-determinism would lead to an exponential
blow-up, because it requires encoding all possible subsets of incoming IN messages—in the case
of the presented model this would be 269 (6 CMs and 10 integration cycles). We did not capture
this non-determinism in IN messages; we assumed that all SMs receive only the highest priority IN
messages.

States in the SM state machine can be classified into two types depending on how they react
to CS messages: 1) states that ignore the CS message (SM_INTEGRATE, SM_SYNC, SM_STABLE, and
SM,TENTATIVE,SYNC) and 2) states that process the CS message (SM,UNSYNC, SM_FL0OD, and SM_-
WAIT_4_CYCLE_START_CS). For each of these state groups, the logic for modeling non-deterministic
message reception is described below. Algorithm [I] presents the logic for states that ignore the
CS message, and Algorithm [2] presents the logic for states that process the CS message. In these
algorithms, the notation a [ ] b denotes a non-deterministic choice between actions a and b.

Line [3] in Algorithm [I] presents the action to be taken when incoming transparent_messages
from CMs do not contain any CS or CA messages. In this case, the SM will process all the highest
priority IN messages that were received. Lines [0} [§ present actions taken when the incoming
message does not contain any CA message, but has a CS message. In this case, if it is also true that
csp > inyp, then some SMs may not receive the highest priority IN messages. This situation occurs
when the SMs first receive the higher priority CS message, which is ignored, and then their filters
block all lower priority IN messages. Therefore, as shown in Line[6] we allow SMs to either process
incoming IN messages or ignore them non-deterministically. On the other hand, if in, > cs,, then
all SMs will receive the highest priority IN messages and will process them as shown in Line
ignoring any incoming CS messages. Similarly, Lines present actions for the case when the
incoming message does not contain any CS message, but has a CA message. If a CA message is
received, then the SM will ignore all IN messages and transition to the SM_WAIT 4 _CYCLE_START_CS
state. Therefore, when in, > ca, some SM cannot receive any CA message and will process the

10



Algorithm 1 Non-deterministic message reception in states that ignore CS messages

Input transparent_messages > Set of messages received from CMs
Input cs, > Highest priority among all CS messages in transparent_messages
Input ca, > Highest priority among all CA messages in transparent_messages
Input in, > Highest priority among all IN messages in transparent_messages

1: if No CA message in transparent_messages then

2: if No CS message in transparent_messages then

3: Process IN messages with priority in,.

4: else

5: if cs, > in, then

6: Ignore all messages | | Process IN messages with priority in,,.
7 else

8: Process IN messages with priority in,.

9: end if

10: end if

11: else

12: if No CS message in transparent_messages then

13: if in, > ca, then

14: Process CA messages | | Process IN messages with priority in,,.
15: else

16: Process CA messages.

17: end if

18: else

19: Process messages using Table
20: end if
21: end if

11



highest priority IN messages.

Finally, Line represents the scenario when transparent_messages have both a CA and a
CS message; Table [1] lists the messages to be processed for the message reception scenarios. For
example, consider the scenario when an SM receives only a CA message, as shown in the third table
row, which can happen when ca, > in, and ca, > cs,. The corresponding action is to process
the CA message. Likewise, the remaining lines in the table can be interpreted and encoded in the
model. The resulting state machine has four boolean variables, one each for the four types of
actions described in the algorithm. These variables encode the various scenarios under which those
actions may be taken by some SM.

Algorithm [2] listed on page the next page, presents the non-determinism logic encoded in the
model for the case when the SM is in a state that does not ignore the CS message. Since message
processing is slightly different in each of the three relevant states (SM_UNSYNC, SM_FLOOD, and SM_-
WAIT 4 CYCLE START CS), they are presented separately in the algorithm.

Algorithm 2 Non-deterministic message reception in states that process CS messages

Input transparent_messages > Set of messages received from CMs
Input cs, > Highest priority among all CS messages in transparent_messages
Input ca, > Highest priority among all CA messages in transparent_messages
Input in, > Highest priority among all IN messages in transparent_messages

1: if No CA message in transparent_messages then

2: if No CS message in transparent_messages then

3: Process IN messages with priority in,, if state is SM_UNSYNC.
4: else

5: if State is SM_UNSYNC then

6: Process CS messages [ ] Process IN messages with priority in,.
7 else

8: if cs, > in, then

9: Process CS messages.

10: else

11: Ignore all messages [ | Process CS messages.

12: end if

13: end if

14: end if

15: else

16: if No CS message in transparent_messages then

17: if in, > ca, then

18: Process CA messages [ ] Process IN messages with priority in,, if state in SM_UNSYNC.
19: else
20: Process CA messages.
21: end if
22: else
23: Process messages using Table
24: end if
25: end if

12



Messages received | Constraints on priority Message to be processed
SM_UNSYNC | SM_FLOOD | SM_WAIT_4_CYCLE_START._CS
only IN iny > csp & iny, > cap IN - -
only CS csp > cap & csp > iny CS Cs CS
only CA cap > in, & cap > csp CA CA CA
IN & CS iny > cayp || csp > cayp IN or CS Cs CS
IN & CA iny > csp || cap > csp CA CA CA
CA & CS cap > iny || csp, > iny CS cs CS
IN & CA & CS true CS CS CS

Table 2. Non-deterministic message reception in states that process CS messages

3 Model Exploration and Scenario-based Test Generation

Once the model changes and extensions were implemented, we had to validate the revised model
with respect to the proof attained for the initial model [3]. This section discusses the setup we used
for this proof. In addition we present some addition scenario-based testing that we performed in
order to validate the modified model’s behavior. Before presenting the proof and test scenarios, we
briefly discuss the various sal-atg options that were used in these experiments.

3.1 The sal-atg Tool

The sal-atg tool [4] is a relatively new member of the SAL tool suite from SRI that performs
automated generation of efficient test sets using the method described in [5]. Automated test
generation is used to construct a sequence of inputs that will cause the system under test to exhibit
behaviors of interest—the test goals. The sal-atg tool generates test sequences from a SAL system
specification that has been augmented with trap variables to encode the test goals. Trap variables
are Boolean state variables that are initially FALSE and are set TRUE when some test goal is
satisfied. For example, if the test goals are to achieve state and transition coverage, then each state
and transition in the specification will have a trap variable associated with it; these will be set
TRUE whenever their associated state or transition is encountered or taken. Further discussion on
sal-atg can be found in the tool documentation on the SAL tool website [4].

Several options are available to seed the execution of sal-atg. Below, we discuss the options
used in this work.

e -s plingeling: This option forces sal-atg to use plingeling [6] as the back-end SAT-solver
for generating test cases. This is a very efficient solver, because it can use parallel threads
to search the state-space. It is also possible to seed its execution with the number of desired
parallel threads, which was very useful in our case. Since memory requirements of plingeling
are directly proportional to the degree of parallelism, we limited the degree of parallelism to
four in our runs.

e -id x: sal-atg uses this option to set the search depth used for the initial test segments; x
is a non-negative integer. An initial test segment is a path in the model that originates from
one of the initial states of the model. If a certain test goal can only be discharged at a depth
of say 20, then to guarantee that sal-atg can reach this test goal, its execution must be seeded
with the option -id 20.
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e -ed z: With this option, sal-atg will search for extension test segments only up to a depth
of x, where z is a non-negative integer. An extension test segment is a path in the model
that originates from one of the initial test segments. If a certain test goal can be reached
after some other test goal has been discharged, then we can use this option to ask sal-atg to
discover this extension segment.

e —-branch: This option forces sal-atg to explore extension segments only from the first initial
segment that it discovered. It is important to understand that, when this option is specified,
sal-atg will not explore other initial segments if it fails to find the extension segment from
the first initial segment. Hence, we specify this option only when we know that the desired
extension segment can be found from any initial test segment.

e -v z: This option specifies the level of verbosity desired from sal-atg, and it mainly helps in
debugging the runs. We used z = 4 in our experiments and found this level to be sufficient
for our purposes.

e ——fullpath: With this option sal-atg outputs the test vectors with all the model variables,
which can then be used to reproduce the tests on real hardware.

e —-incrext: This option forces sal-atg to look for extension segments at incremental depths
starting from 0 and going up to the value specified in -ed. It is an optimization to reduce
the running time, so that test goals at shorter depths can be discharged faster.

In addition to the options listed above, we have also used two other options, namely --latching
and --noslice, which are minor optimizations. Details of these options can be found in the tool
documentation.

3.2 Model Validation using Proof

The main goal of a proof is to verify that the worst-case duration for the system to synchronize is
less than 60 simulation steps. This finding was presented in the project report that contained the
initial model [3]. We expect that the same proof holds for the extended model.

The model used for the proof has one priority level and assumes two faulty channels as described
in Section Since there is only one priority level, CM2, CM4, and CM6, from the system shown in
Figure (1], are switched off. Note that switching off these CMs does not disconnect CM1, CM3, or CM5,
from SM4, SM5, and SM6. The sm_cm_connections module ensures that messages are transmitted
across these switched off CMs. This modeling choice simplifies the handling of scenarios with and
without priorities and makes it possible to use the same model for both scenario types. Further, it
is assumed that CM1 and CM2 can be non-deterministically faulty as described in Section and
these faults can change dynamically for each simulation step. Finally, neither the power on, sleep,
and re-power on times of the SMs nor the power on time of CM5 are constrained in any manner;
therefore, they can be chosen non-deterministically as well. The faulty CMs (CM1 and CM3) are
powered on at start-up.

The model was first driven into a clique scenario in which at least two SMs disagreed on their
clocks and are in either SM_SYNC or SM_TENTATIVE_SYNC state. The definition of this clique in the
model is generic enough to allow all possible clique scenarios and ensure that the worst-case is
explored by the proof. Once the model reaches this clique, the worst-case counter is started and
counts the number of simulation steps until all the SMs are synchronized and are in SM_SYNC or
SM_STABLE state.
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The proof was executed using the bounded model checker sal-bmc [7], with Yices as the backend
SAT-solver. The following command was used to execute the proof.

sal-bmc -v 4 -d 100 TTEthernet_startup_proofl test > TTEthernet_startup_proofl.trc
2> TTEthernet_startup_proofl.stderr

A depth of 100 was considered for the proof because the worst-case counter is started only after
the system reaches a clique scenario. This should be found at a depth of 35, however we wanted
to ensure that the counter does not exceed 60. The results of the proof confirmed our expectation
that the worst-case duration for the system to synchronize after the initial clique is less than 60
simulation steps. This check ensures that the extended model behaves consistently with the initial
model, and that no extraneous behavior was introduced while incorporating priorities into the
model.

3.3 Model Validation using Test Scenarios

Several test scenarios were generated for validating the behavior of the extended model. These
scenarios explore different aspects of the protocol state machine, further increasing our confidence
on the correctness of the model. Below we present these scenarios and discuss results.

1. Periodic stability for high priority SM: This test case demonstrates an interesting be-
havior of the TTEthernet startup protocol in the presence of priorities. Initially, all CMs and
all the low priority SMs are powered on. Once the low-priority SMs synchronize their clocks
and are in SM_STABLE state, one high-priority SM is powered on. The expected behavior from
here on is that the low-priority SMs will continue to be in SM_STABLE state, while the high
priority SM switches between SM_SYNC and SM_INTEGRATE or SM_UNSYNC states. This interest-
ing behavior occurs because SMs are allowed to be in SM_STABLE state in the extended model
even if they do not receive an IN message for one integration cycle. As a result, the low
priority SMs continue to be in SM_STABLE state, while the high priority SM keeps fluctuating
between the synchronized and unsynchronized states.

Component priorities are fixed as shown in Figure [1} It is also assumed that CM1, CM2, CM3,
and CM4, can be non-deterministically faulty as described in Section However, to ensure
portability of the resulting test vectors to hardware, the faults are restricted to be fixed at
start-up. That is, sal-atg is free to choose a specific fault pattern for the earlier mentioned
CMs at the beginning of execution, but it cannot change it dynamically. Initially SM1, SM2,
and SM3 are powered on, and once they synchronize, SM4 is powered on.

The following command was used to execute this test case, and sal-atg confirmed the expected
behavior using one test at a depth of 38.

sal-atg TTEthernet_startup_test_priority cluster TTEthernet_startup_test_priority.scm
-s lingeling -id 30 -ed 30 -v 4 --branch --fullpath --incrext --latching --noslice
> TTEthernet_startup_test_priority.trc 2> TTEthernet_startup_-test_priority.stderr

2. Low-priority clique, then high-priority swamp: This test case demonstrates another
interesting behavior of the TTEthernet startup protocol in the presence of priorities. Initially
the low-priority SMs are allowed to form a clique of their own, without interference from the
high-priority SMs. Once the clique is formed, the high- priority SMs can interact with the
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low-priority SMs with the result that the high-priority SMs will swamp the low-priority SMs
and force them to synchronize with the high-priority clock. An interesting observation in this
test case was that, although the low-priority SMs synchronize to the high-priority time-line,
their membership vectors are never updated to reflect this fact, because the low-priority IN
messages in the scenario are always suppressed by the priority filters of all the SMs.

Component priorities and CM fault modeling are identical to the previous case. In this test
case, we considered two different SM and CM power-on sequences. In the first case, only the
low-priority SMs and all the CMs are powered on initially, and once the low-priority SMs
form a clique, the high-priority SMs are powered on. In the second case, all the SMs are
powered on at start-up, and to enable low priority clique formation, the non-faulty CMs (CM5
and CM6) are powered on only after the low priority SMs synchronize with each other.

The following command was used to execute this test scenario with the first SM and CM
power on sequence described above. The sal-atg tool confirmed the expected behavior using
one test at a depth of 58.

sal-atg TTEthernet_startup_test_ptyl cluster TTEthernet_startup_test_ptyl.scm
-s lingeling -id 35 -ed 30 -v 4 --branch --fullpath --incrext --latching --noslice
> TTEthernet_startup_test_ptyl.trc 2> TTEthernet_startup_test_ptyl.stderr

The following command was used to execute this test scenario with the second SM and CM
power on sequence described above. The sal-atg tool confirmed the expected behavior using
one test at a depth of 38.

sal-atg TTEthernet_startup_test_pty2 cluster TTEthernet_startup_test_pty2.scm
-s lingeling -id 35 -ed 30 -v 4 --branch --fullpath --incrext --latching --noslice
> TTEthernet_startup_test_pty2.trc 2> TTEthernet_startup_test_pty2.stderr

. Swinging membership: This test case demonstrates a swinging membership pattern for
the extended model with one priority level. This pattern includes the following steps: 1) All
the SMs are powered on and allowed to synchronize their clocks; 2) Three SMs (SM3, SM4,
and SM5) are switched off, leaving the other three to remain synchronized; 3) The switched
off SMs are re-powered on and allowed to synchronize with the other SMs. Since the test
case uses only one priority level, CM2, CM4, and CM6 are switched off, and the remaining CMs
are powered on at startup. The fault model is identical to the first test case on “Periodic
stability for high priority SM.”

The following command was used to execute this test scenario, and sal-atg confirmed the
expected behavior using one test at a depth of 53.

sal-atg TTEthernet_startup_test_swinging cluster TTEthernet_startup_test_swinging.scm
-s lingeling -id 35 -ed 30 -v 4 --branch --fullpath --incrext --latching --noslice
> TTEthernet_startup_test_swinging.trc 2> TTEthernet_startup-test_swinging.stderr

. Incremental membership: This test case demonstrates an incremental membership pat-
tern for the extended model with one priority level. This pattern uses the following steps:
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1) Three SMs (SM1, SM2 and SM4) are powered on and allowed to synchronize their clocks;
2) The remaining SMs are powered on and allowed to synchronize with the other SMs, one
at a time. That is, SM3 is powered on and allowed to synchronize, then SM5 is powered on
and allowed to synchronize, and finally SM6 is powered on. Since the test case uses only one
priority level, CM2, CM4, and CM6 are switched off, and the remaining CMs are powered on
at startup. The fault model is identical to the first test case on “Periodic stability for high
priority SM.”

The following command was used to execute this test scenario, and sal-atg confirmed the
expected behavior using 1 test at a depth of 78.

sal-atg TTEthernet_startup_test_incremental cluster TTEthernet_startup_test_incremental.scm
-s lingeling -id 80 -ed O -v 4 --fullpath --latching --noslice
> TTEthernet_startup_test_incremental.trc 2> TTEthernet_startup_test_incremental.stderr
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4 Coverage-based Test Generation

In this section, we describe test generation for achieving protocol decision logic coverage. The main
goal of this test generation is to achieve (MC/DC) coverage of the TTEthernet startup protocol,
via normal protocol action constrained within a valid fault-scenario with respect to the protocol
assumptions. We allowed for two faulty CMs to be present within a three-channel system, as
described in Section We consider both high- and standard- integrity models.

To ease the transfer of the generated test cases to hardware, we applied a fault model restricted
to permanent fault scenarios; that is, connection failures are held consistent throughout the entire
test scenario. The rationale for this is twofold: 1) If coverage is achieved with this restrictive fault
model, we can be assured that coverage will be attainable with a more relaxed fault model as well;
2) A permanent fault model may simplify the execution of the tests on the TTEthernet validation
hardware test bed since it removes the need to synchronize fault switching to the protocol execution
flow.

Besides the permanent fault injection on two CMs, the test generation procedure can also
dynamically power on or put to sleep SMs and can delay the power on of the non-faulty CM. This
additional level of control is aligned with the capability of the TTEthernet hardware validation test
bed.

4.1 Model Instrumentation

To satisfy the MC/DC coverage criterion, all of the following conditions had to be observed at least
once during the test campaign [§].

1. Each decision tries every possible outcome.
2. Each condition in a decision takes on every possible outcome.
3. Each entry and exit point is invoked.

4. Each condition in a decision is shown to independently affect the outcome of the decision.
Independence is shown by changing one condition at a time and observing its impact on the
decision outcome.

The first step of MC/DC test coverage generation is to instrument the model. We achieved
this by adding trap variables to every transition of the SM/CM /filter state machines. Further,
when a transition guard used logical OR, additional trap variables were introduced to observe the
independent impact of each condition in the guard. Note that no trap variables were introduced for
the non-deterministic transitions described in Section [2.2] because the non-deterministic transitions
are only a consequence of the modeling abstraction and are not part of the startup protocol itself.

To understand the coverage instrumentation, consider the code-snippet for the high integrity
model shown below. It represents the transition from SM_SYNC to SM_UNSYNC state in the SM
state machine. The guard (cs_ignore_states_ignore OR cs_ignore_states_in) models the non-
determinism described in Section so we do not consider it for MC/DC coverage. As in-
dicated by the rest of the transition guard, two conditions participate in a logical OR: condi-
tion mem2nat (SM_local_async_membership) >= sm_sync_to_unsync_threshold_async and condi-
tion mem2nat (SM_local _async_membership) >= mem2nat(SM_local_sync_membership). The first
condition tests whether the asynchronous membership vector is above the high integrity threshold
for SM_SYNC state, while the second tests whether the asynchronous membership vector is at least as
big as the synchronous membership vector. In either case, the SM must transition to the SM_UNSYNC
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state. To achieve MC/DC coverage of this transition, we consider three trap variables: trap_30b,
trap_30c, and trap_30d, shown below. Together, these variables ensure that the independent
impact of each condition on this transition is evaluated.

(]
SM_state = SM_SYNC AND
(cs_ignore_states_ignore OR cs_ignore_states_in) AND
inctime(SM_local_clock) = sm_dispatch_int AND
(mem2nat (SM_local_async_membership) >= sm_sync_to_unsync_threshold_async OR
mem2nat (SM_local_async_membership) >= mem2nat(SM_local_sync_membership)) AND
NOT sm_sleep_timeout
-—>
trap_30b’ = IF mem2nat(SM_local_async_membership) >= sm_sync_to_unsync_threshold_async
AND mem2nat (SM_local_async_membership) < mem2nat(SM_local_sync_membership)
THEN TRUE ELSE FALSE ENDIF;
trap_30c’ = IF mem2nat(SM_local_async_membership) >= mem2nat(SM_local_sync_membership)
AND mem2nat (SM_local_async_membership) < sm_sync_to_unsync_threshold_async
THEN TRUE ELSE FALSE ENDIF;
trap_30d’ = IF mem2nat(SM_local_async_membership) >= mem2nat(SM_local_sync_membership)
AND mem2nat (SM_local_async_membership) >= sm_sync_to_unsync_threshold_async
THEN TRUE ELSE FALSE ENDIF;
SM_state’ = SM_UNSYNC;

Once the model was instrumented, attaining coverage was surprisingly straightforward using
sal-atg. The trap variables of interest were simply entered as test goals. With respect to coverage,
our first idea was to evaluate the coverage attained from two perspectives. One run, _allobservers,
would have an unconstrained observation point, where coverage could be achieved by any one of the
six state machine instances firing a trap variable. The _oneobserver run would have a constrained
observation point, where we required a specific state machine instance to fire a trap variable.
However, our attempt at instrumenting the all-observer case missed an unanticipated behavior of
sal-atg. When a trap variable is defined locally for each instance of the state machines, sal-atg
does not automatically bind the test goal for that trap variable to the logical OR of all of the
local variable instances; instead it selects only one instance for monitoring. Hence, in practice our
_allobservers test runs were not fully-specified instances of _oneobserver test cases. In addition,
since the _oneobserver runs encountered no difficulty in attaining full coverage with the limited
time available (see Section , we focused only on the one_observer test runs with respect to test
vector analysis.

4.2 Instrumented Model File Description
4.2.1 TTEthernet_startup_coverage_sm_cm_one(all)observer(s)

These files were used to attain coverage of the SM and CM state machines for the high-integrity
case. Since priorities have no direct impact on the SM or CM state machines, all of the SMs and
CMs operate at a single priority level for these tests. Because only one priority level is used, CM2,
CM4, and CM6 are switched off from the system shown in Figure[I] Note that switching off these CMs
does not disconnect CM1, CM3, or CM5 from SM4, SM5, and SM6. The sm_cm_connections module
ensures that messages are transmitted across these switched off CMs. In accordance with the fault
generation hypotheses, the coverage runs CM1 and CM2 were configured to be non-deterministically
faulty, relaying and receiving only a subset of the messages. Once again, the faults of CM1 and
CM2 were assumed to be permanent to ease porting the resulting test vectors to the TTEthernet
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hardware validation test bed. That is, sal-atg can choose a specific fault pattern for CM1 and CM3 at
the beginning of execution but cannot change it dynamically cycle by cycle. The coverage models
do not constrain the power on, sleep, and re-power on times of the SMs, nor the power on time
of CM5, the fault-free CM. The faulty CMs—CM1 and CM3—are powered on at the beginning of the
scenario. SM1 was used as the observer for coverage of the SM state machine, and the non-faulty
CM5 was used as the observer for coverage of the CM state machine. The SAL model corresponding
to the one observer case is presented is posted on the NASA DASHIlink AFCS-Distributed Systems
site (see Appendix . For the standard integrity case, the model used to attain coverage of the
SM and CM state machines is in the file TTEthernet_startup_coverage_sm_cm_one_observer _si.

4.2.2 TTEthernet_startup_coverage filter_one(all)_observer(s)

These files were used to attain coverage of the priority filter state machine for the high-integrity
case. For this test, the default priorities were unspecified for the SMs and CMs, enabling sal-atg to
non-deterministically choose values at the beginning of the test scenario. Since two priority levels
are required to attain this coverage, all CMs are powered up at the start of the test scenario. The
fault specification is consistent with that of the sm_cm_coverage models, in that all the CMs in
channel 1 and channel 2 can non-deterministically omit messages. To ensure portability of the
resulting test vectors to the hardware test bed, the connectivity is assumed to be permanent and
fixed at start-up. Similar to the sm_cm_coverage runs, the filter coverage models do not constrain
the power on, sleep, and re-power on times of the SMs, nor the power on time of CM5 and CM6, the
fault-free CMs. The faulty CMs—CM1, CM2, CM3, and CM4—are powered on at the beginning of the
scenario. The priority filter of SM1 was used as the observer for coverage in this case. The SAL
model corresponding to the one observer case is posted on the NASA DASH/ink AFCS-Distributed
Systems site (see Appendix . For the standard integrity case, the model used to attain coverage
of the priority filter state machine is in the file TTEthernet_startup_coverage_filter_one_observer _si.

4.3 Test Coverage Results
4.3.1 Summary

The performance of sal-atg in conjunction with Lingeling SAT-solver was impressive. For all of the
coverage models, tests achieved full coverage of the reachable state transitions. For both the high-
integrity and standard-integrity configurations, the SM coverage runs completed in approximately
two days of execution time using three processing cores. The CM and priority filter coverage runs
completed in less than a day of execution using four processing cores.

4.3.2 Detailed findings

The sal-atg tool ran into memory problems (heap space allocations) when we tried to run it with
54 trap variables for coverage of the SM state machine. We suspect this issue occurred because
sal-atg has to record the test vectors for all the discharged trap variables at any point in time. This
problem was resolved by splitting the trap variables into five sets and running sal-atg on each set
independently. By splitting variables into groups, sal-atg is forced to generate separate test vectors
for discharging each group of variables, which can increase the number of generated tests. We were
able to reduce the number of tests by using information from the failed runs. Any two variables
that were discharged by the same test vector in the failed runs were kept in the same group. With
this strategy, we were able to discharge 50 of the 54 trap variables for coverage of the SM state
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machine. The four undischarged variables are not reachable in the high-integrity configuration;
these are discussed in Section [£.3.3

As described earlier, we performed two experiments for each coverage requirement. One in
which all the SMs and CMs act as observers for discharging the test goals, and the other in which
exactly one SM or CM is used to discharge the test goals. An interesting observation from these
experiments is that in both cases, sal-atg produced identical test scenarios. That is, even when we
did not restrict the observer to a single SM or CM, sal-atg only used SM1 or CM1 to discharge the
test goals.

It is also worth noting that although the resulting test vectors were identical, there was a
significant difference in the running time of sal-atg for the two cases. The case with one observer
was markedly slower than the case with all observers. We suspect the main reason for this difference
is that the one-observer model uses global trap variable arrays instead of the local trap variables
as in the all-observers model. Note that this observation must not be relied upon as a matter of
fact, because the two experiments were performed on similar, but different machines.

4.3.3 SM coverage test results

We used sal-atg in two different modes to achieve coverage on the SM state machine. For the first
two trap variable groups, we allowed sal-atg to explore extension test segments once a trap variable
was discharged by some initial test segment. For the remaining three trap variable groups, we did
not allow sal-atg to explore extension segments. We based this decision on our observations in the
failed runs. We did not observe any variable being discharged by extension segments in the last
three groups. So to reduce the running time of sal-atg, we disabled extension segments for these
variable groups.

These five runs for the high-integrity configuration are archived under the sm_runs direc-
tory as traces TTEthernet_startup_coverage_sm_oneobserver_first.trc, TTEthernet_startup_cover-
age_sm_oneobserver_second.trc, TTEthernet_startup_coverage_sm_oneobserver_third.trc, TTEther-
net_startup_coverage_sm_oneobserver_fourth.trc, and TTEthernet_startup_coverage_sm_oneobserver_-
fifth.trc. For the standard integrity configuration, the runs are archived under the sm_runs directory
as traces TTEthernet_startup_coverage_sm_oneobserver_si_first.trc, TTEthernet_startup_coverage -
sm_oneobserver_si_second.trc, TTEthernet_startup_coverage_sm_oneobserver_si_third.trc, TTEther-
net_startup_coverage_sm_oneobserver _si_fourth.trc, and TTEthernet_startup_coverage_sm_oneobserver_-
si_fifth.trc.

For coverage of the SM state machine, sal-atg did not discharge four trap variables in the
high-integrity case -trap_8, trap_13, trap_23, and trap_30a. Below, we present the transitions corre-
sponding to these variables and justify the lack of coverage.

1. Transition from SM_UNSYNC to SM_TENTATIVE_SYNC: This transition requires a membership
vector of 6 in the high integrity case. In the system with six SMs, if one SM is in the SM_-
UNSYNC state, then at most five SMs can be synchronized; hence, the membership vector can
have no more than five SMs. Therefore, this transition can never be enabled in our test
configuration.

2. Self-loop transition in SM_TENTATIVE_SYNC for sending IN messages: Once an SM enters
SM_TENTATIVE_SYNC state, it immediately transitions to either SM_SYNC or SM_UNSYNC in the
next simulation step. The SM_TENTATIVE_SYNC state is thus a transient state, and no SM can
execute the self-loop transition.

3. Self-loop transition in SM_FLOOD for decreasing the timer in the step immediately
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after entry into the state: This transition is not feasible in the high-integrity case, because
the timer is always set to zero upon entry into the state.

4. Transition from SM_SYNC to SM_UNSYNC upon reception of IN message: This transition
is not feasible in the high-integrity case, because the membership vector required for this
transition is a non-integer between 0 and 1.

In the standard-integrity configuration, sal-atg did not discharge five trap variables— trap_8,
trap_13, trap_23, trap_30c, and trap_35c. Note that, except for the threshold values, the SM state
machine in the standard-integrity configuration is identical to that in the high-integrity configura-
tion. Below, we present the transitions corresponding to these undischarged variables, and justify
the lack of coverage.

1. The reasoning for the lack of coverage of trap variables trap_8, trap_13, and trap_23, is identical
to the high-integrity case.

2. Variable trap_30c corresponds to the transition from SM_SYNC to SM_UNSYNC based on the
size of the asynchronous membership vector. This transition is not feasible in the standard-
integrity case, because the asynchronous membership vector required for this transition must
be smaller than 1 and, at the same time, greater than the synchronous membership vector.

3. Variable trap_35c corresponds to the transition from SM_STABLE to SM_INTEGRATE based on the
size of the asynchronous membership vector. This transition is not feasible in the standard-
integrity case, because the asynchronous membership vector required for this transition must
be smaller than 1 and, at the same time, greater than the synchronous membership vector.

4.3.4 CM coverage test results

The CM coverage tests completed with similar success to the SM tests. The initial test run for
the high-integrity configuration, executed with an initial search depth of 30, discharged all but two
of the trap variables. This run is archived under the cm_runs directory as TTEthernet_startup_-
coverage_cm_oneobserver.trc. The two variables not discharged in this initial run were trap_cm_9b
and trap_cm_9d. The variable trap_9b was later discharged by extending the initial search depth
to 38. This run is archived as TTEthernet_startup_coverage_cm_tentative_oneobserver.trc. For the
variable trap_9d, we concluded that it could not be discharged by a non-faulty CM, if all SMs were
also non-faulty, as explained in the trap_9d trap variable logic given below.

IF mem2nat(CM_local_async_membership) < cm_tentative_to_unsync_threshold_async
AND
mem2nat (next_message_out [1] [CM_local_integration_cycle] .membership_new)
< cm_tentative_to_sync_threshold
AND
mem2nat (next_message_out[1] [CM_local_integration_cycle] .membership_new)
>= cm_tentative_to_unsync_threshold_sync

THEN
TRUE

ELSE
FALSE

ENDIF;

To exercise this trap variable, the CM must remain in CM_TENTATIVE_SYNC state for at least one
integration cycle and also detect a persistent membership vector of size exactly 2 during this time.
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However, non-faulty SMs will not continue to execute to support this scenario. That is, if only two
SMs have synchronized their clocks, the SM cluster will not persist for a duration of one integration
cycle and will immediately transition to the SM_UNSYNC state. As a result of this situation, the non-
faulty CM will not be able to exercise this transition in the CM_TENTATIVE _SYNC state. However,
because it can listen to a subset of powered-on SMs, a faulty CM may be able to exercise this
transition. We observed this transition in the dedicated test run executed for this purpose. In this
run, one of the faulty CMs exercised this transition at a depth of 38. The corresponding trace file
is archived as TTEthernet_startup_coverage_cm_tentative_oneobserver_2.trc. In this case, although
more than two SMs had synchronized their clocks, the faulty CM was receiving messages from only
two of them and able to detect a persistent membership vector of size exactly 2.

For the standard integrity configuration, all but seven trap variables were discharged by a single
run executed with a search depth of 38. Below, we present the transitions corresponding to the
seven undischarged variables and justify the lack of coverage.

1. Transition from CM_UNSYNC state to CM_TENTATIVE_SYNC state: This transition is infeasible
in the standard-integrity configuration, because it requires a membership vector smaller than
3 and at the same time larger than or equal to the number of SMs in the system, which in
our case is 6.

2. Trap variables in the CM_TENTATIVE_SYNC state: In the standard-integrity configuration,
state CM_TENTATIVE_SYNC is unreachable, because of the infeasibility of the transition from
CM_UNSYNC to CM_TENTATIVE_SYNC. Hence, none of the trap variables for transitions originating
from the CM_TENTATIVE_SYNC state were discharged.

3. Transition from CM_INTEGRATE state to CM_WAIT 4 CYCLE_START state: This transition
is also infeasible in the standard-integrity configuration, because it requires a membership
vector smaller than 3 and at the same time larger than or equal to the number of SMs in the
system, which in our case is 6.

4.3.5 Priority filter coverage test results

The filter coverage test completed with full coverage for both the high-integrity and standard-
integrity configurations. These runs are archived under the filter_runs directory as TTEthernet_-
startup_coverage_filter_oneobserver.trc and TTEthernet_startup_coverage_filter_oneobserver_si.trc,
respectively.

4.4 Example Test Generation Output

In this section we present two interesting test scenarios from the high-integrity test cases, one from
the CM coverage tests and another from the SM coverage tests.

4.4.1 SM coverage test scenario

For the SM coverage tests, we present the test scenario corresponding to trap variable trap -
30c in the SAL model is posted on the NASA DASHlink AFCS-Distributed Systems site (see
Appendix . This scenario corresponds to the transition from state SM_SYNC to state SM_UNSYNC
when the asynchronous membership count exceeds the synchronous membership count in the SM
state machine.

The connectivity diagram for this scenario is shown in Figure [3] Initially, CM1 and CM3 are
switched-on and CM2, CM4, CM6, and CM5 are all switched-off. Since this test scenario uses only
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Channel 1

Priority=1 Priority=1 Priority=1

Priority=1

Priority=1

Left-right connection Right-left connection Bi-directional connection

Figure 3. Connectivity diagram for SM test scenario (trap variable 30c)

a single priority level, CM2, CM4, and CM6 are never switched-on. CM5, as shown in Figure [4] is
switched-on at Step 20 of the test trace. Since CM5 is a non-faulty CM, all connections between
CM5 and the SMs are good. On the other hand, CM1 and CM3 are faulty, and therefore their
connections with the SMs are not all good, as can be seen in Figure For instance, CM1 can
receive messages only from SM1, SM5, and SM6, and can send messages only to SM2, SM3, SM5,
and SM6. It is completely disconnected from SM4. Note that this connectivity is determined at
initialization by sal-atg and remains fixed for the duration of the test trace.

The test trace for trap variable trap_30c is shown in Figure [l This trace is a sanitized version
of the trace output generated by sal-atg, in which unnecessary SM and CM sleep and power-on
events are eliminated. In the traces generated by sal-atg, several sleep and power-on events have
no impact whatever on the trace outcome. We eliminated such events to simplify the traces. In
this figure, Sx denotes SMx and Cx denotes CMx. The SM/CM list on top of the step-number line
denotes power-on events for the respective SMs and CMs. Likewise, the SM/CM list below the
step-number line denotes sleep events for SMs and CMs. The boxes provide system information
such as component states and membership vectors at various stages of the test.

In Step 20 SM1 sends a CA message and moves to the SM_FLOOD state, while in Step 21 SM5 and
SM6 send IN messages and move to the SM_TENTATIVE_SYNC state. In Step 22 SM1 moves back to
SM_UNSYNC state as it does not receive its own CA message, because SM1 can send messages only to
CM1 and CM5 and receive messages only from CM3 and CM5. CM5, although powered on, is not
yet fully operational. Also in Step 22, SM3 and SM5 receive the CA message from SM1 and move to
SM_WAIT FOR_CYCLE_START_CS state. In Step 23 SM1 receives the IN message from SM5 and SM6
and moves to SM_SYNC state to synchronize with SM5 and SM6. It is interesting to note that at
this stage SM3 and SMb5 are synchronizing with SM1, whereas SM1 itself has already synchronized
with the old clock of SM5 and SM6. This scenario is basically a consequence of the asymmetric
connectivity in the system. In Step 26, after SM5 and SM6 have been forced into sleep, SM3 sends
IN message and moves to SM_TENTATIVE_SYNC state. In Step 28, after receiving the IN message
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Step 23 Step 26
Step 21 States: States:
S1: SM_SYNC S1: SM_SYNC
States: $3,55: SM_WAIT $3: SM_TENTATIVE_SYNC
s1: SM_FLOOD - s4: SM_UNSYNC
S3: SM_INTEGRATE Async. Membership of S1: -
$5,56: SM_TENTATIVE_SYNC Sync. Membership of S1: S5,56 Async. Membership of S1: -
Sync. Membership of S1: S5,56

S6

s3 S5 s3 < SM/CM power-on
S2 S1 sS4 C5 S2
> Trace steps
01 11 13 16 20 21 23_24 26 27 28
S3 S2 S6 S5 S3 sS4 S2 € SM sleep
Step 24

States: Step 28

S$1: SM_SYNC States:

S3: SM_WAIT S$1: SM_SYNC

S4: SM_UNSYNC

S5: SM_POWER_UP Async. Membership of S1: S3

Sync. Membership of S1: S1
Async. Membership of S1: S4

Sync. Membership of S1: S5,56

Figure 4. Execution trace for SM test scenario (trap variable 30c)

from SM3, the synchronous membership of SM1 has a size of 1 (itself only) and the asynchronous
membership of SM1 also has a size of 1 (SM3). Therefore, at the start of the next integration
round in Step 31, SM1 executes the transition with trap variable trap_30c to move from SM_SYNC
to SM_UNSYNC state. Note that CMb did not play any role in enabling the target transition, and
the entire scenario was only feasible because of the asymmetric connectivity between SMs and the
faulty CMs.

4.4.2 CM coverage test scenario

For CM coverage, we considered the test scenario corresponding to trap variable trap_cm_9d in the
SAL model posted on the NASA DASHIlink AFCS-Distributed Systems site. (see Appendix |Al).
This scenario corresponds to the self-loop transition in state CM_TENTATIVE_SYNC, which is taken
only when the asynchronous membership count is less than 2 and the synchronous membership
count is less than 3.

The connectivity diagram for this scenario is shown in Figure[5} Similar to the SM test scenario,
CM2, CM4, and CM6 are switched-off, and CM1 and CM3 are switched-on throughout the test.
CM5 is initially switched-off, but is later switched-on during Step 22 of the test trace as shown
in Figure [f] CM5 has perfect connections to all the SMs, because it is non-faulty; whereas, CM1
and CM3 have inconsistent connectivity. For instance, CM3 can receive messages only from SM1,
SM4, SM5, and SM6 and can send messages only to SM2, SM3, SM4, and SM5. Similar to the SM
test scenario, this connectivity is determined at initialization by sal-atg and remains fixed for the
duration of the test trace.

The test trace for trap variable trap_cm_9d is shown in Figure [} This trace is a sanitized
version of the trace output generated by sal-atg, in which unnecessary SM and CM sleep and
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Figure 5. Connectivity diagram for CM test scenario (trap variable 9d)

power-on events are eliminated. In Step 24, SM3, SM4, and SM5 send IN messages and move to SM_-
TENTATIVE_SYNC state. Upon receiving these IN messages in Step 25, CM1 moves from CM_UNSYNC
to CM_TENTATIVE_SYNC state. Since CM1 cannot receive messages from SM3, it receives only two
IN messages and moves to CM_TENTATIVE_SYNC instead of CM_SYNC. At the same time, CM5, which
was powered on in Step 22, receives all 3 IN messages and moves to CM_SYNC state. In Step 26, upon
receiving the IN messages, SM2 moves from SM_UNSYNC to SM_SYNC state to synchronize with SM5.
SM3 and SM4 are forced into sleep at this stage. In Step 29, after completing one integration round,
SM2 and SM5 send IN messages for the next round. In Step 30, CM1 receives these IN messages
and executes the self-loop transition in CM_TENTATIVE_SYNC state corresponding to trap variable
trap_cm_9d. This is because the synchronous membership size of CM1 is 2 and its asynchronous
membership size is 0 at this stage.
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Step 19 Step 23 RESRIgE
Step 25 .
States: States: SELER
: : States: $2,55: SM_SYNC
$3,54,55: SM_INTEGRATE 52: SM_UNSYNC C1: CM_TENTATIVE_SYNC $3,54: SM_POWER_UP
s
S5 < SM/CM power-on
S4S3  S2 S6 S1 c5
py > Trace steps
01 2 3 4 6 7 14 15 16 18519 20 22923 24725 26
s3 s5/ sa S6 S1 s3 S5 € SM sleep
s4
Step 7 Step 17 Step 18
Step 24
States: States: States:
C1: CM_UNSYNC $2: SM_WAIT $2: SM_FLOOD States:
$3,54,55: SM_TENTATIVE_SYNC

C1 asynchronous membership is 0 throughout the trace

Figure 6. Execution trace for CM test scenario (trap variable 9d)

5 Conclusions and Future Work

Modern desktop computer hardware has reached a stage where formal methods technology is fea-
sible for distributed test generation. The techniques are memory intensive, but in recent years,
memory requirements have become accessible for normal desktop hardware. In our experiments,
we demonstrated sal-atg’s ability to generate tests that yield full MC/DC coverage with minimal
human guidance. The performance of Lingeling and Plingeling sat-solvers also reduced the test
generation duration by a factor of 4-5 relative to Yices. When test generation takes half a day
to two days, such improvements can be critical to the real-world applicability of these new test
generation methods.

Given the memory-intensive nature of the techniques explored, a common frustration encoun-
tered during this work was the erroneous termination of test generation procedures due to memory
availability or heap management issues. In some cases, failure occurred after a day of execution
and a run terminated with no results. The new capabilities of sal-atg2, added by Bruno Dutertre
of SRI as part of this work package, were of great assistance. The sal-atg2 tool records the test
vectors as test goals are discharged, so that even in erroneous scenarios, successful test vectors are
salvageable.

During this study, we manually augmented the model to instrument MC/DC coverage. However,
we believe that automatic augmentation may be a useful simple extension to the SAL-tool suite
and would provide a less error-prone, systematic application of the techniques explored herein.

The test scenarios presented in this study, have been generated with the capability of the
TTEthernet hardware validation test bed in mind. The only test orchestration required to execute
test scenarios is limited to static connectivity mappings and the sequencing of end-system and
switch power on and power off operations. Hence transferring test tests onto the hardware test
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platform is anticipated to be relatively straight forward. The only real difficulty is the alignment
and treatment of time. With respect to clock drift this is also mitigated by the hardware test bed
capability to use a common clock. With respect to TDMA phase alignment, the situation is a little
more complicated. Unfortunately, the TTEthernet hardware requires a significant time to initialize
from power on, and this time was not accommodated within the test generation models. Therefore
this time needs to be accommodated within the hardware scenarios. For the single observer case
this should be simple to achieve by aligning the phase of the completion of the configuration, with
respect to the unit under test to the operating phase of the test stimulusﬂ

A second issue of the hardware test bed is the limited visibility of protocol flow. As part of the
phase 2 work we shall execute the test scenarios within an instrumented simulation test bench to
allow the formal comparison of VHDL code coverage with the predicted coverage of the generated
tests.

We believe that we have been successful in reaching the original goals of this work package.
The generation of MC/DC coverage tests from system-derived scenarios exceeded our expectations,
and we achieved full coverage of the high-integrity protocol action for both end-system (SM) and
switch (CM) components. Through informal exploration test development, we also developed a
good understanding of how best to abstract target scenarios. At the time of writing this report,
we admit that further effort is required to hide the complexities of SAL to a novice user base.

The integration of these techniques with emerging state-of-the-art techniques such as con-
strained, random testing may be a promising avenue of exploration.

3 Achieved by a simple phase offset
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Appendix A

TTEthernet Startup Protocol SAL Models and Results

The AFCS-Distributed Systems project has been established on NASAs DASHIink to support
public dissemination of the models and results of this program. The URL https://c3.nasa.gov/dashlink/
will take the user to the Home Page of DASHIink. The user can access the site by hovering over the
RESEARCH AREAS pull-down list and right clicking on Verification and Validation. Scroll down
to AFCS Distributed Systems and right click the project. Right click TTEthernet SAL Models
under Popular Resources and several source files are identified.

The zip file, TTEthernetStartupProtocolSALModelsAndResults.zip, contains a number of text
files.

e Instructions are provided in README.txt

SAL models are provided in *.sal files

Scheme source files are provided in *.scm files

Trace files are provided in *.trc files. If a test vector is found, then it is shown in the .trc file

Results are provided in the *.stderr files
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