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INTRODUCTION 

 

Following the launch scrub of Space Shuttle mission STS-133 on November 5, 2010, an 

anomalous condition of cracked and raised thermal protection system (TPS) foam was observed 

on the External Tank (ET).  Subsequent dissection of the affected TPS region revealed cracks in 

the feet of two Intertank (IT) metallic stringers.  An extensive investigation into the cause(s) and 

corrective action(s) for the cracked stringers was initiated, involving a wide array of material and 

structural tests and nondestructive evaluations, with the intent to culminate into the development 

of flight rational.  One such structural test was the instrumented tanking test performed on 

December 17, 2010.  The tanking test incorporated two three-dimensional optical displacement 

measurement systems to measure full-field outer surface displacements of the TPS surrounding 

the affected region that contained the stringer cracks.  The results showed that the radial 

displacement and rotation of the liquid oxygen (LO2) tank flange changed significantly as the 

fluid level of the LO2 approached and passed the LO2 tank flange. 

 

BACKGROUND-EXTERNAL TANK DESIGN 

 

The Space Shuttle flight vehicle is shown in Figure 1, consisting of the Orbiter, two Solid Rocket 

Boosters (SRBs), and the ET.  The three primary structural components of the ET are two 

propellant tanks (a liquid hydrogen (LH2) tank and a LO2 tank) and the IT, shown expanded in 

Figure 2.  The IT is a stiffened cylindrical structure consisting of eight mechanically joined 

panels (two integrally-machined stiffened thrust panels to react booster loads and six hat-

stiffened skin panels) shown in Figure 3.  Figure 4 shows the basic construction of a typical hat-

stiffened skin (skin-stringer) panel.   

 

BACKGROUND-TANKING TEST 

 

The dissection of the affected TPS region revealed cracks in the feet of two IT metallic stringers 

(S6-2 & S7-2).  The cracked length of the two affected stringers were replaced with a standard 

repair, which included a new stringer portion, splice joint, and the addition of radius blocks on 

the feet of the stringers.  Video evidence of the launch scrub narrowed the time of occurrence of 

the cracked stringers to when the liquid oxygen in the LO2 tank was near the LO2 flange.  
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Therefore, to expose the repaired stringers to this same thermal environment, a tanking test was 

performed.  The tanking test sequence followed the standard launch procedures and time-line. 

 

The region of the repair was instrumented with strain gages and thermocouples, to (1) ascertain 

the presence of any unforeseen structural design issues of the repair and (2) assist in grounding 

analysis models [1].  In addition, a similar instrumentation package was applied to panel 3, an 

unrepaired site of similar structural geometry, to facilitate collection of direct comparative data 

between repaired and as-built response to thermal environments. 

 

A comparative assessment between repaired and as-built regions was also planned using three-

dimensional optical displacement measurement systems.  The radial displacement of the IT and 

LO2 tank as the LO2 approached and passed the LO2 flange was of particular interest; therefore, 

photogrammatic speckle patterns were applied to the outer surface of the TPS near the LO2 

flange.  The photogrammatic speckle patterns were applied to panel 2 (the repaired site) and 

panel 6 (representing the as-built region). 

 

The photogrammetry camera systems (ARAMIS 3D Image Correlation Systems) were mounted 

to the Launch Complex 39A Fixed Support Structure (FSS).  The camera system used to image 

the repaired region of panel 2 was sixty feet away.  The camera system used to image the as-built 

region of panel 6 was only thirty feet away.  An over-head sketch of the ET, two SRBs, and the 

FSS is shown in Figure 5.  The eight IT panels, the location of the two photogrammetry camera 

systems and their distance from the ET, and the instrumentation and photogrammatic speckle 

pattern locations are also shown.  

 

The photogrammetry system used to image the repaired region of panel 2 lost its calibration and 

did not yield reliable deformation results.  The photogrammetry system used to image the as-

built region of panel 6 remained in calibration throughout the duration of the test and provided 

useful displacement data.  The comparative assessment between the two panels could not be 

performed; however, the displacement results from panel 6 provided valuable data to assess.  The 

analyses, results and conclusions presented herein pertain only to panel 6. 

 

The dimensions of the T-shaped photogrammatic speckle pattern applied to panel 6 are shown in 

Figure 6.  The underlying structure of panel 6 relative to the speckle pattern is shown in Figure 7.  

The eighteen stringers are shown as well as the single and double skin doubler regions.  Also 

shown is the location of the internal I-beam.  Lastly, sixteen lines equally spaced across the 

width of the speckle pattern are shown.  These lines are located on the stringer tops and stringer 

valleys, and represent the locations where radial displacement data was analyzed. 
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ANALYSIS 

 

The photogrammetry system captured images throughout the entire test, from just prior to the 

beginning of LO2 fill until the LO2 tank had nearly been drained.  The time span from first 

image to last is greater than nine hours.  A total of 1637 images were captured, with the 

following frequencies: 

Every 10 seconds during fill (for approximately 175 minutes) 

Every 60 seconds during stable replenish (for approximately 240 minutes) 

Every 6 seconds during pre-pressurization (for approximately 12 minutes) 

Every 10 seconds during drain (for approximately 28 minutes 

Every 60 seconds during remainder of drain (for approximately 105 minutes). 

 

The assessment investigated the radial displacement data from the photogrammetry system.  The 

displacement data was studied along the stringer tops and valleys along sixteen vertical lines that 

extend from top to bottom of the speckle region, with emphasis on the radial contraction and 

rotation of the LO2 flange.   

 

The LO2 flange was obscured by the TPS, which made it difficult to locate the position of the 

flange beneath the speckled region.  However, design drawings of the LO2 flange closeout TPS 

application indicate that the mating surface between the LO2 and IT flange is 6.30 inches above 

the intersection of the IT and LO2 flange close-out TPS application [2].  This intersection is 

clearly visible in Figure 8(a), a photograph of the flange closeout.  The lighter colored TPS in the 

center of the photograph is the LO2 flange TPS close-out application, while the darker colored 

TPS covers the LO2 tank and IT.  Figure 8(b) shows a cross sectional schematic of the LO2 

flange region, showing the LO2 and IT metallic components and the TPS coverage. 

 

The LO2 flange rotation computation methodology used inverse trigonometric relationships, 

relating the out-of-plane displacements (w) and y-coordinates (y) to the rotation.  Figure 9(a) 

shows the methodology for calculating the rotation at the data point closest to the LO2 flange.  

Figure 9(b) is a cross section schematic depicting the LO2 flange region and the approximate 

range of the photogrammetry data used in the calculation of the rotation. 

 

Although the data collection during the tanking test was from beginning of the fill until the LO2 

tank was nearly empty, the primary times of interest were during the initial phases of the tanking, 

when the LO2 fluid level approaches and passes the LO2 flanges until steady-state.  The first 

1200 images were studied, which incorporated the fill and replenish time frames.  The data 

studied represented approximately the first seven hours (24,000 seconds) of the test. 

 

RESULTS 

 

The computed values from the test data for the LO2 flange rotation are shown in Figure 10, 

showing the flange rotation as a function of time.  As the LO2 filled the LO2 dome, the flange 

began to rotate due to the thermal gradients within the LO2 tank and IT.  As the LO2 fluid level 

approached and passed the LO2 flange, a sharp increase in flange rotation was observed.  As the 

thermal gradients continued to reach steady-state, the rotation angle relaxed to its steady-state 

position.  In Figure 10, the flange rotations for fourteen of the sixteen lines are shown versus 
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time.  Two lines were omitted due to missing data in the area of interest.  The average of the 

fourteen lines is shown in Figure 11.  Also shown in Figure 11 are circular markers that represent 

finite element results using a single stringer finite element model, which utilized the temperature 

data from the tanking test. 

 

The radial displacement of the LO2 flange was also of interest.  The LO2 displacement 

computation read the displacement data directly from the results file.  However, this 

displacement includes the rigid body motion.  All displacements were grounded to the radial 

motion of the IT internal frame.  The resulting LO2 flange displacement as a function of time is 

shown in Figure 12.  Similar to the LO2 flange rotation assessment, the radial displacement 

began small and then suddenly increased as the LO2 fluid level approached the LO2 flange.  

However, unlike the rotation, the displacements did not relax, but maintained their value through 

steady-state.  The average displacement data is shown in Figure 13 which also contains circular 

markers representing the finite element displacement results. 

 

CONCLUSIONS 

 

The photogrammetry analysis of STS-133/ET-137 determined that the displacements and 

rotation of the LO2 flange was strongly influenced by the fluid level of the liquid oxygen and the 

thermal gradients within both the LO2 tank and IT.  As the fluid level approached the LO2 

flange, the flange rotation and radial contraction was observed to change quickly.  However, as 

the IT temperature profile approached steady-state, the flange rotation relaxed while the radial 

displacements maintained their position.  These results confirmed the finite element predictions 

that the worst-case flange rotation was during the thermal transient phase of the tank filling 

process. 
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Figure 1.  The Space Shuttle flight vehicle. 
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Figure 2.  Expanded view of the External Tank's primary structural components. 
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Figure 3.  General view of Interank. 

 

 

Figure 4.  Basic construction of Intertank skin-stringer panel. 
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Figure 5.  Tanking test set-up. 
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Figure 6.  Dimensions of speckle pattern applied to panel 6. 
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Figure 7.  Speckle pattern of panel 6 with Intertank’s underlying structure. 

 

 

Figure 8.  (a) TPS close-out photograph and (b) cross section schematic. 
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Figure 9.  (a) Rotation computation for LO2 flange and (b) cross section schematic with 

corresponding region of interest highlighted. 
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Figure 10.  Flange rotation result (14 of 16 lines). 

 

Figure 11.  Average of flange rotation compared to FEM results. 
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Figure 12.  Flange radial displacement result (14 of 16 lines). 

 

 

Figure 13.  Average flange radial displacement compared to FEM results. 
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On November 5, 2010, the launch of Space Shuttle Discovery on mission STS-133 was 

scrubbed due to a hydrogen gas leak at the ground umbilical connection to the External 

Tank, ET-137. In addition, an unrelated visual inspection of the External Tank’s thermal 

protection system revealed a crack, which presented itself in a form never seen before, at the 

top of the Intertank near the liquid oxygen tank. Compounding the issue, it was discovered 

through dissection that the crack in the thermal protection foam was due to cracks in the 

Intertank’s metallic stringers hidden beneath the foam. A large effort to understand and 

remedy these issues was immediately initiated. One important investigation was the 

instrumented tanking test which incorporated photogrammetry assessments of two relatively 

small regions, one where the thermal protection system crack occurred and another in a 

similar, yet un-cracked region. This test offered a unique and challenging opportunity, for 

the first and only instance in the long history of the Space Shuttle program, to interrogate 

with photogrammety the cryogenically induced deformations of the Intertank-liquid oxygen 

tank interface flange region. The photogrammetry systems witnessed the entire nine hour 

prelaunch tanking/detanking timeline, and the post-test assessment offered insight into the 

deformation and rotation history of the LO2 flange. The assessment of the deformation data 

produced valuable information that ultimately supported the development of flight rationale 

for ET-137. The photogrammetry results and correlation to finite element analysis results 

presented herein provide a synopsis of a complex scenario in which the LO2 flange 

displacement and rotation were strongly influenced by the liquid oxygen fluid level in the 

LO2 tank and that the worst-case flange rotation occurred when the fluid level just passed 

the LO2 flange during the filling process. 

I.  Introduction 

OLLOWING the launch scrub of Space Shuttle mission STS-133 on November 5, 2010, an anomalous 

condition of cracked and raised thermal protection system (TPS) foam was observed on the External Tank (ET). 

Subsequent dissection of the affected TPS region revealed cracks in the feet of two Intertank (IT) metallic hat 

stringers. An extensive investigation into the cause(s) and corrective action(s) for the cracked stringers was initiated, 

involving a wide array of material and structural tests and nondestructive evaluations, with the intent to culminate 

into the development of flight rational
1
. One such structural test was the instrumented tanking test performed on 

December 17, 2010. In addition to the strain and temperature measurements, the tanking test incorporated two three-

dimensional optical displacement measurement systems to measure full-field outer surface displacements of the 

TPS. One system was dedicated to the repaired region that contained the initial stringer cracks, and for comparison, 

another system was dedicated to an as-built region with similar structural features. The photogrammetry assessment 

results showed that the radial displacement and rotation of the liquid oxygen (LO2) tank flange changed 

significantly as the fluid level of the LO2 approached and passed the LO2 tank flange. 

II. Background 

In this section, structural design features of the ET are described, narrowing to the details specific to the region 

near the stringer cracks. Following the ET descriptions, the goals of the tanking test are listed and the 

photogrammetry system setup is briefly described. Lastly, the dimensional coverage of the photogrammetry speckle 

pattern is provided as well as the important underlying structure configuration beneath the speckle pattern and TPS. 
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A. External Tank Design 

The Space Shuttle flight vehicle, an assembly of an Orbiter, two Solid Rocket Boosters (SRBs), and the ET, is 

shown in Fig. 1. A box with an ‘X’ in Fig.1 marks the approximate location of the cracked stringer on ET-137. The 

„137‟ is the production order number for the ET. An expanded view of the ET in Fig.2 shows the three primary 

structural components of the ET, the liquid hydrogen (LH2) tank, LO2 tank, and IT. Figure 3 shows a general view 

of the IT, with the forward (flight) direction identified as well as the identification a single thrust panel and hat-

stiffened skin-stringer panel. Also shown in this general view of the IT are three of five circumferential ring frames 

inside the IT. Two diametrically opposed thrust panels receive and distribute the SRB loads. The thrust panels are 

single piece integrally machined panels. These two thrust panels plus six skin-stringer panels are mechanically 

joined to form the unpressurized IT. Figure 4 shows the basic construction of a typical skin-stringer panel. The hat-

stringers span the full length of the IT except in locations where they would interfere with a large penetration. The 

forward and aft ends both have an L-shaped bolting flange to join to the LO2 and LH2 tanks respectively. Also 

shown are skin doublers, which are extra skin layers for increased strength. The cracked feet were at the forward end 

of the stringers, shown in the right-hand side of Fig. 4. The TPS was sprayed over the IT and LO2 tank, completely 

covering the stringers, skin, bolting flanges, and LO2 tank. 

B. Tanking Test 

The dissection of the affected TPS region of panel 2 revealed cracks in the feet of two IT metallic hat stringers 

(S6-2 & S7-2). The cracked length of the two affected stringers were replaced with a standard repair, which included 

a new stringer portion, splice joint, and the addition of radius blocks on the feet of the stringers. Video evidence of 

the launch scrub narrowed the time of occurrence of the cracked TPS and therefore, the stringers, to when the liquid 

oxygen in the LO2 tank was near the LO2 flange. Therefore, to expose the repaired stringers to this same thermal 

environment, a tanking test was performed. The tanking test sequence followed the standard pre-launch propellent 

loading procedures and time-line. 

The region of the stringer repair on panel 2 was instrumented with strain gages and thermocouples to (1) 

ascertain the presence of any unforeseen structural design issues of the repair and (2) assist in grounding analysis 

models
2
. In addition, a similar instrumentation package was applied to panel 3, an unrepaired site of similar 

structural geometry, to facilitate collection of direct comparative data between repaired and as-built structural 

response to thermal environments. 

A comparative assessment between panel 2 (representing the repaired region) and panel 6 (representing the as-

built region) was also planned using three-dimensional optical displacement measurement systems, or 

photogrammetry. The radial displacement of the IT and LO2 tank as the LO2 approached and passed the LO2 flange 

was of particular interest; therefore, photogrammatic speckle patterns were applied to the outer surface of the TPS 

near the LO2 flange.  

C. Photogrammetry 

The photogrammetry camera systems (ARAMIS 3D Image Correlation Systems) were mounted to the Launch 

Complex 39A Fixed Support Structure (FSS). The camera system used to image the repaired region of panel 2 was 

sixty feet away. The camera system used to image the as-built region of panel 6 was thirty feet away. An over-head 

sketch of the ET, two SRBs, and the FSS is shown in Fig. 5. The eight IT panels, the location of the two 

photogrammetry camera systems and their distance from the ET, and the instrumentation and photogrammatic 

speckle pattern locations are also shown. For more imformation on the photogrammetry aspects of the tanking test, 

including set-up, calibration, operational challenges, and results, refer to Ref. 3. 

The photogrammetry system used to image the repaired region of panel 2 lost its calibration and did not yield 

reliable deformation results. The photogrammetry system used to image the as-built region of panel 6 remained in 

calibration throughout the duration of the test and provided useful displacement data. The comparative assessment 

between the two panels could not be performed; however, the displacement results from panel 6 provided valuable 

data to assess.  The analyses, results and conclusions presented herein pertain only to panel 6. 

The dimensions of the T-shaped photogrammetry speckle pattern applied to panel 6 are shown in Fig. 6. A width 

of sixty-four inches at its widest and fifty inches at its tallest, the speckle pattern covered approximately 2270 square 

inches or less than 16 square feet, a relatively small area compared to the ET. The structure of panel 6 in relation to 

the speckle pattern is shown in Fig. 7. The eighteen stringers of panel 6 are shown as well as the single and double 

skin doubler regions. No portion of the speckle pattern was over the double-doubler region, the pattern only covered 

portions of the basic (no doubler) skin-stringer region and the single doubler region. The top of the speckle extended 

slightly above the Intertank/LO2 tank mating flange. A coordinate frame is positioned near the bottom-center of the 

speckle pattern, with the X-axis as horizontal or hoop, Y-axis as vertical or axial. The Z-axis is the out-of-plane 
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coordinate, but not shown in the figure. Also shown in Fig. 7 is the location of the internal circumferential ring 

frame. Lastly, sixteen lines equally spaced across the width of the speckle pattern are shown. These lines are located 

on the stringer tops and stringer valleys, and represent the locations where radial displacement data from the 

photogrammetry system was analyzed. 

III. Analysis 

The photogrammetry system captured images throughout the entire test, from just prior to the beginning of LO2 

fill until the LO2 tank had nearly been drained. The time span from first image to last is greater than nine hours. A 

total of 1637 images were captured, with the following frequencies: 

1) Every 10 seconds during fill (for approximately 175 minutes) 

2) Every 60 seconds during stable replenish (for approximately 240 minutes) 

3) Every 6 seconds during pre-pressurization (for approximately 12 minutes) 

4) Every 10 seconds during drain (for approximately 28 minutes) 

5) Every 60 seconds during remainder of drain (for approximately 105 minutes). 

This assessment investigated the radial displacement data from the photogrammetry system. ARAMIS post-

processing output files were in the form of data extraction time history along each line of interest for each image. 

Data extraction was the Y-coordinate and three displacement components, but only the out-of-plane (considered 

radial) was investigated for this paper. The displacement data was studied along the stringer tops and valleys along 

sixteen vertical lines that extend from top to bottom of the speckle region, with emphasis on the radial contraction 

and rotation of the LO2 flange. The key assumption for the analysis is that the TPS movement closely follows that 

of the metallic components under the TPS and that any differential movement of the TPS due to thermal is small 

relative to the overall deformations of the LO2 tank and Intertank. 

A. LO2 Flange Location 

The LO2 flange was obscured by the TPS, which made it difficult to locate the Y-coordinate of the flange 

beneath the speckled region. However, design drawings of the LO2 flange TPS close-out indicate that the mating 

surface between the LO2 and IT flange is 6.30 inches above the intersection of the IT acreage and LO2 flange close-

out TPS applications
4
. This intersection is clearly visible in a photograph of the flange TPS close-out shown in Fig. 

8(a). The lighter colored TPS in the center of the photograph is the LO2 flange TPS close-out, while the darker 

colored TPS covers the LO2 tank and IT acreage. Within ARAMIS, the intersection was also clearly visible and 

could be used to interrogate its Y-coordinate. The Y-coordinate of the Intertank to LO2 flange was determined to be 

44.1 inches in the coordinate system shown in Fig. 7. Figure 8(b) shows a cross sectional schematic of the LO2 

flange region, showing the LO2 and IT metallic components and the TPS coverage. Dotted lines between Fig.8(a) 

and Fig. 8(b) link the TPS intersections shown in the photograph and schematic. Also identified is the 6.30 inch 

dimension between the LO2 and IT flange interface and LO2 flange close-out TPS application. 

B. LO2 Flange Rotation and Displacement 

The LO2 flange rotation computation methodology used an inverse trigonometric relationship, relating the 

rotation (θ) to the change in out-of-plane displacements (W) and Y-coordinates (Y). This approach inherently 

accounts for rigid body motion since it considers changes in position. Figure 9(a) shows the methodology for 

calculating the rotation at the data point closest to the LO2 flange, Yi. Rotation is based on the Y-coordinates and 

corresponding out-of-plane displacement (W) of two data points, one above and one below the flange, skipping the 

two data points nearest to Yi. Ignoring the (i+1) and (i-1) data points tended to smooth the rotation data. Figure 9(b) 

shows a cross section schematic depicting the LO2 flange region and the approximate range of the photogrammetry 

data used in the calculation of the rotation.  

LO2 flange radial displacements were read directly from the results file at a point nearest to Y=44.1 inch. 

However, this displacement includes the rigid body motion of the Shuttle stack moving towards or away from the 

cameras. The forward-most Intertank ring frame, shown in Fig. 3 and schematically in Fig. 7, offers a radially stiff 

location and is far enough removed from the temperature gradients that any movement may be considered rigid body 

motion. Therefore, to remove the radial rigid body motion component of displacement at the LO2 flange, the 

displacements were grounded or subtracted from the radial motion of the IT internal frame. 

Although the data collection during the tanking test was from beginning of the fill until the LO2 tank had nearly 

been drained, the primary focus for this paper was when the LO2 fluid level approached and passed the LO2 flange. 

The first 650 images were analyzed, representing a time line from beginning of the test until the LO2 tank was 

approximately one-half full. This was the first 7000 seconds of the tanking test, or approximately 20% of the test 
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duration. Figure 10 shows three approximate fluid levels in the LO2 tank, labeled A, B, and C, and their 

corresponding time in seconds during the test. These three fluid levels represent special times of interest during the 

tanking test. The lowest most fluid level represents the 5% fill level the LO2 tank. The middle fluid level is very 

near the level of the LO2 flange and represents a time equivalent to when the stringer cracked during the initial fill. 

The highest fluid level represents a time in which the instrumentation from the tanking test was at steady-state. 

These three fluid level lines in Fig. 9 are also presented in the results section to provide correlation between time and 

fluid levels. 

IV. Results 

The computed LO2 flange rotation results are shown in Fig. 11, showing the flange rotation as a function of time 

for fourteen of the sixteen stringer/valley lines. Two lines were omitted due to missing data in the area of interest. 

As the LO2 filled the lower portion of the LO2 dome (fluid level A), the flange began to slowly rotate due to the 

thermal gradients within the LO2 tank and IT. As the LO2 fluid level approached and passed the LO2 flange (fluid 

level B), a sharp increase in flange rotation was observed. As the thermal gradients transitioned to steady-state the 

rotation angle relaxed to its steady-state position (fluid level C). The average of the fourteen lines is shown in Fig. 

12. Also shown in Fig. 12 are diamond-shaped markers that represent finite element results using a single stringer 

finite element model
5
. 

The radial displacement of the LO2 flange was also of interest. The resulting LO2 flange displacement as a 

function of time is shown in Fig. 13.  Similar to the LO2 flange rotation assessment, the radial displacement began 

small and then suddenly increased as the LO2 fluid level approached the LO2 flange. However, unlike the rotation, 

the displacements did not relax, but maintained their value through steady-state. The average displacement data is 

shown in Fig. 14 which also contains diamond-shaped markers representing the finite element displacement results
5
. 

Conclusions 

Following the November 5, 2010 launch scrub of Space Shuttle mission STS-133, an anomalous condition of 

cracked and raised thermal protection system (TPS) foam was observed on the External Tank (ET). Subsequent 

dissection of the affected TPS region revealed cracks in the feet of two Intertank (IT) stringers. On December 17, 

2010, to test the stringer repairs, an instrumented tanking test was performed incorporating three-dimensional optical 

displacement measurement systems to measure full-field outer surface displacements of the TPS. This unique and 

challenging test offered an opportunity to interrogate with photogrammety the cryogenically induced deformations 

of the Intertank-liquid oxygen tank interface region while it was subjected to pre-launch tanking procedures. The 

photogrammetry assessment of the tanking test concentrated on the angular rotation and radial deflection of the LO2 

flange. It was determined that the displacements and rotation of the LO2 flange was strongly influenced by the fluid 

level of the liquid oxygen and the thermal gradients within both the LO2 tank and IT. As the fluid level approached 

the LO2 flange, the flange rotation and radial contraction were observed to change quickly. However, as the IT 

temperature profile approached steady-state, the flange rotation relaxed while the radial displacements maintained 

their position. These results confirmed the finite element predictions that the worst-case flange rotation was during 

the thermal transient phase as the fluid level of the LO2 approached and passed the LO2 tank flange. 
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Figure 1. The Space Shuttle flight vehicle with 

the location of the cracked stringer identified. 

 

 
Figure 2. Expanded view of the 

External Tank’s primary structural 

components. 

 

 
Figure 3. General view of the ET’s Intertank. 
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Figure 4. Basic construction of Intertank skin-stringer panel. 

 

 
Figure 5. A view looking aft of the tanking test setup on the Shuttle relative to the Fixed Support 

Structure. 
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Figure 6. Dimensions of the T-shaped speckle pattern applied to panel 6. 
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Figure 7. Speckle pattern of panel 6 with the Intertank’s underlying structure. 
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Figure 8.  (a) TPS close-out photograph and (b) cross section schematic. 
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Figure 9. (a) Rotation computation methodology for LO2 flange and (b) cross section schematic with 

corresponding approximate location of data points of interest from photogrammetry data lines. 
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Figure 10.  A side view of LO2 tank showing the location of the 

LO2 flange and three fluid levels with corresponding times of 

interest during tanking test. 
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Figure 11.  Flange rotation results (14 of 16 lines). 
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Figure 12.  Average of flange rotation compared to FEM. 
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Figure 13.  Flange radial displacement result (14 of 16 lines). 
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Figure 14.  Average flange radial displacement compared to FEM results. 

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0 1000 2000 3000 4000 5000 6000 7000

A
v

er
a

g
e 

L
O

2
 F

la
n

g
e 

D
is

p
la

ce
m

en
t 

(i
n

ch
)

Time (seconds)

Average LO2 Flange Displacement vs. Time

Test

FEM

Time Slice 

Fluid Level

A B C


