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National Aeronautics and
Space Administration

“To reach for new heights...

and reveal the unknown so that what we do and learn %

will benefit all humankind.”

“Extend and sustain human activities
i across the solar system.”
' Lzt NASA 2011 Strategic Plan




The Future of Exploration
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advantage of synergy.... We think of the SLS as the human spaceflight program,

My desire is to work more closely with the human spaceflight program so we can take ,
b_ut it could be hugely enabling for science. -

Jupiter .

i John Grunsfeld, Associate Administrator
NASA Science Mission Directorate
Nature, Jan 19, 2012
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Initial Exploration Missions (EM) |

EM-1in 2017 . - -
* Un-crewed circumlunar flight — free return trajectory
* Mission duration ~7 days

- Demonstrate integrated spacecraft systems .
performance prior to crewed flight

» Demonstrate high speed entry (~11 km/s) and :
Thermal Protection System prior to crewed flight

EM-2 no later than 2021

» Crewed lunar orbit mission
* Mission duration 10-14 days

P ———
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NASA’S Space Launch System

€ Vital to NASA’s exploration strategy and the Nation’s space agenda.

€ Key tenets: safety, affordablllty and
sustainability

€ System Requirements Review/
System Definition Review in progress

€ Partnerships with NASA Exploration
Systems Development (Headquarters),
Orion and Ground Operations Programs,
and Centers

€ Prime contractors on board, engaging i
the U.S. aerospace workforce and On Track for First Flight in 2017 -
specialized infrastructure ‘

® Turning plans into progress: Design and development work moving forward
today, to deliver an unsurpassed capability that launches in 2017
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Garry Lyles, Chief Engineer
The SLS Design




SLS Architecture Block Upgrade Approaclh

Block 2
Block 1A e
105t A
Block 1 314 ft. g
70t - Payload Fairings
321 ft.
Launch Abort System ; '
Orion . ' '
Interim Cryogenic f e : I —— Upper Stage
Propulsion Stage (ICPS) el o7 5 1t (3.4 m) 275t 8.4 m) with
| | J-2X
Core Stage __ Core Stage - Engines

Solid
Rocket
Boosters

Advanced
Boosters
=k

. RS-25 Core Stage Engines
. (Space Shuttle Main Engines)

Starting'with Available Assets and Evolving the Design

27
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SLS 70 Metric Tons: First Flight 2017

INITIAL CAPABILITY, 2017-21

70t
318 ft.

Launch Abort System
Orion Multi-Purpose Crew Vehicle———@a * :

(MPCV)
Interim Cryogenic
Propulsion Stage (ICPS)
MPCV Stage Adapter
Launch Vehicle Stage Adapter

Core Stage/Avionics
(Boeing)

Rocket Booster (SRB)
(ATK)

5-Segment SoIid—I

~ Core Stage Engines (RS-25)
. TR p (PWR)
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Ascent Mission Profile: SLS/Orion

LAS Jettison j 5 Core Stage Engine Cutoff

Time (sec) 158.4 Time (sec) 475.2

Altitude (ft) 193,530 Maximum Acceleration ~ s
Maximum Dynamic - Mach No. 4.9 - ’ f _ “w
Pressure 2 \ -
Time (sec) 76.4
Altitude (ft) 48,189 g
Mach 154 * - Payload Separation

Time (sec) MECO + 30 sec

Maximum Boost Stage Axial
Acceleration

Time (sec) 110.4
Mach No. 3.9

SRB Separation
Time (sec) 128.4
Altitude (ft) 141,945
Mach No. 4.33

§ Gravity Turn minimizes aero loads on vehicle

Tower Clear & § and uses Earth G to turn vehicle horizontal
Initiate
Roll/Pitch Roll Maneuver places astronauts Core Stage
Me;neuver § in heads-down position Pacific
sec .
; . . ¥ Splashdown
Time (sec) 0.6 (1.5 hrs)
h SRB Atlantic
o Launc . . Splashdown :
| At Ignition - 331 sec (Not To Scale)
Time. (sec) . 0.0 (5.5 min) .
Weight (Ib) 5,795,338 .
. . ¢ 8200 T.May GLEX.11
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SLS: Being Built Today

Stages Industry Day at Michoud Eﬁ:ﬂu—

First ring forging prepared for
Orion Stage Adapter, Cudahy, AR F’\?g\'/“tzy(’) 1l\1ew Prieans,

WI, April 2012. : N ' - : -

KSC is preparing Launch Complex 398
for SLS/Orion operations, 2012.

Installing the J-2X powerpack in test

stand at SSC.
i
A
;e Ta=d K
PR ten R e i ‘1 —
a a4
- - . ﬂ .
RS-25 Core Stage Engine - J-2X Upper Stage Engine powerpack test, Meeting with Space Campers at
in the KSC Engine Processing Facility, - Stennis Space Center (SSC), MS, Feb 2012, U.S. Space & Rocket Center, Huntsville,
2011. . AL, Feb 2012.
‘ , 8200 T.May GLEX.12
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Jody Singer, Deputy Program Manager
Hardware Progress
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5-Segment Solid Rocket Booster
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/" Avionics and controls for.SLS booster readying for Flight Control Test 1 at
ATK'’s test facility in Pron ontory, Utah, March 28,2012 e
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J-2X Upper Stage Engine
readying for testing at
Stennis Space Center
March 2012
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First J-2X/development
engine on the A-2 Test Stand
at Stennis Space Center
April 20, 2012
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Marshall Space Flight Center’s
Michoud Assembly Facility

- -
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+ - One-of-aKind Infrastructure Asset
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Stages and Avionics

- Core Stage
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SLS Commonalities

70 ton Payload
(Block 1)

Payload Interfaces:
» Mechanical
» Avionics
» Software

130 ton Payload
(Block 2)

Core Stage

: I
RS-25 Core Stage Engines
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David Beaman, Spacecraft and
Payload Integration Manager
Adapters.and Fairings ..




Exploration Flight Test-1 Mission Overv’iéw

Launch Vehicle/

Upper Stage Disposal Upper Stage Separation
LAUNCH
SLC-37B
St LANDING &
Translation Burn RECOVERY. Launch Abort System
(LAS) Jettison
Upper Stage

Engine Burns

OrinnfUﬁper Stage
Separation
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Orion MPCV Stage Adapter




First ring forging preparation by
ATl/Ladish Forging, Cudahy,
Wisconsin, April 2012
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CreW application

: — Payload Fairings
Launch Abort System ——
Orion —

Interim Cryogenic —

Propulsion.Stage
27.5 ft. (8.4 m)

Carg 0 applic;at_ion

Orion

30 ft. (10 m)
Payload Adapter

« MPCV Stage Adapter | Core Stage
* Launch Vehicle Stage | ¥
Adapter 2
Solid
Rocket
Boosters —I
RS-25

INITIAL CAPABILITY, 2017-21

or

— Upper Stage
with
J-2X

Engine

Liquid
Solid

Rocket
—Booste;rs

EVOLVED CAPABILITY, Post-2021




Steve Creech, Strategic Development Manager
Mission Capabilities




A National Asset for Stakeholders and Partners

Incremental steps to steadily build, test,
refine, and qualify capabilities that lead
to affordable flight elements and a deep
space capability.
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S_L'S Performance = Affordabillity

Less Risk Less Expensive Increased Design Increased

Mission Operations ‘Simplicity Mission

Reliability and

_ - . Confidence

Increased lift capacity High energy orbit Volume and méss Volume and mass

' capability . capability
Increased payload Shorter trip times Increased design Fewer deployments and -
margin simplicity critical operations
* - Safe, Affordable, Sustainable

WWW.Nasa.gov/sls 8200 T.May GLEX.33



—,ﬁ{i of Europa
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—Enceladus Orbiter
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Soméwhere, something incredible

IS walting to be known.
— Carl Sagan -
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