Antenna Measurements:
Radiated Emissions/Immunity
NASA/Orion Mars/Moon Capsule

John Norgard
Robert Scully
NASA/JSC
Houston, TX USA
j.norgard@ieee.org
Overview

• Space Exploration (NASA New Role/Mission)
 – International Space Station (ISS)
 • Space HQ
 – (Old) Space Shuttle (Glider)
 – (New) Space Ship “Orion” ~ Capsule (Crew Module / Service Module)
 • Blunt Body / Parachute Reentry
 – EMI Compliance Tests
 • NASA/JSC Anechoic Chamber Tests (1m) Un-Shielded Components
 – Radiated Emissions/Immunity (MIL-STD)
 • Army/YGP Hanger Tests
 – Near-Field Tests (NF->1m) Build-Up Shielded Parts
 • Sled
 • DART
 – Far-Field Tests (FF->1m) Full System Integration
 • Capsule
Outline

• Introduction
 – Space Exploration [NASA (New) Role/Mission]
 • (New) Space Ship ~ “Orion” Capsule (Space Ship)
 • (Old) Space Shuttle Replacement (Glider)

• Orion Parachute Reentry ~ High-Altitude A/C Drop Tests
 – EMI Tests
 • SoF (A/C Extraction ~ Orion Prototype)
 • RE/RI (RS/RV) ~ MIL-STDs
 – NASA/JSC-Houston(SAC)
 • (1) Components/(1m) (Un-Shielded)
 – Army/YPG-Yuma(Hanger)
 • (2) Parts Build-Up (Shielded Components/NF->1m) Sled/DART
 • (3) Full System Integration ~ Test Vehicle (Shielded Parts/FF->1m) Capsule (CM/SM)
 – EMC Results

• Conclusions
Outline

• Introduction
 – Space Exploration [NASA (New) Role/Mission]
 • (New) Space Ship ~ “Orion” Capsule (Space Ship)
 • (Old) Space Shuttle Replacement (Glider)

• Orion Parachute Reentry ~ High-Altitude A/C Drop Tests
 – EMI Tests
 • SoF (AC ~ Orion Prototype)
 • RE/RI (RS/RV) ~ MIL-STDs
 – NASA/JSC-Houston(SAC)
 • (1) Components/(1m) (Un-Shielded)
 – Army/YPG-Yuma(Hanger)
 • (2) Parts Build-Up (Shielded Components/NF->1m) Sled/DART
 • (3) Full System Integration ~ Test Vehicle (Shielded Parts/FF->1m) Capsule
 – EMC Results

• Conclusions
Intro: Space Exploration

- NASA
 - US Space Exploration
 - Sites
 - JPL ~ Unmanned Missions (Pasadena, CA)
 - JSC ~ Manned Missions (Houston, TX)
 - KSC ~ Launch Site (Cape Canaveral, FL)
Intro: NASA/JPL

- Unmanned Robotic Planetary Exploration
 - Fly-By/Probes (Inner/Outer Planets)
 - Landers/Rovers (Mars)
 - Deep Space Network
Intro: NASA/JSC

• Manned Missions
 – Moon/Mars ~ Asteroids
 • Lunar Habitat
 – Live in Space
 – Mine Moon’s Minerals
 • Plasma Engine
 • Launch to Mars
Intro: Space Station

- International Space Station (ISS) ~ $150B
 - HQ / Space Operations
 - Research Lab
 - Space Environment
 - Microgravity
 - Observatory
 - Factory
 - Staging Base
 - Moon/Mars
 - Orbit
 - LEO (~370km/7.7km/s)
 - Ionosphere (F Layer)
 - Orbits (15.7/day)
Intro: Past Launch Vehicle (Space Shuttle)

- Space Shuttle
 - (Taxi) Terminated
 - Cost (~1/2$B/Launch=$65K/Kg)
 - Safety/Reliability (~30y)
 - Maintenance
 - Utility (135)
 - Design Limitations (~80%)
 - LEO
 - Equatorial Orbits
 - <22,700 Kg (Payload)
 - Satellite Launch Platform
Intro: Proposed Launch Vehicles

• Short Haul: Earth2LEO(ISS)
 – Russian
 • Proton
 • Soyuz
 – Commercial
 • SpaceX ~ Dragon Supply Ship

• Long Haul: Earth2GEO
 – NASA ---> Moon/Mars(Asteroids)
 • Orion ~ Space Ship
 • Deep Space Exploration
Intro: Proposed Launch Vehicles

- Orion
 - Launch Abort System (LAS)
 - Crew Module (Blunt Body Capsule)
 - Service Module
 - (Adapter)
Space Power Facility: Plumbbrook E³ System Test (Reverberation)

Chamber

Lifting and Positioning Assembly

RF Pallet, including:
- RF Signal Generation
- RF Sensing and Measurement

Safety System

Control and Data Recording
Intro: Crew Module Tests
NASA/JSC & Army/YPG

- Crew Module (Capsule)
 - Designed/Redesigned (Emerging Technologies)
 - Earth Reentry
 - Blunt Body
 - Parachute Decent
 - Parachute Drop Tests (C130/C17)

- Capsule Parachute Assembly System (CPAS)
 - Components
 - Avionic Tray
 - Mid-Air Delivery System Tray
 - Vehicle
 - Sled/Tub
 - DART
 - Capsule (Prototype)
Intro: Blunt Body / Parachute

- Stages
 - Extraction
 - Staggered Chutes
 - Pilot (1)
 - Drogue (2)
 - Mains (3)
 - Pyrotechnic/Explosives
 - Initiators/Cutters
 - Mission Critical
 - EMI/EMC
Intro: CPAS
Capsule Parachute Assembly System

- Parachute Testing
 - NASA/JSC
 - Components (EMI Chamber)
 - Army
 - Build-Up (YPG/Hanger)
 - System Integration (YPG/Hanger)
 - Drop Tests (YPG/Site)
 - Test/Simulation (Final Landing Stages)
 - Experiments (EMI)
 - C130 (Sled/DART)
 - C17 (Capsule)
 - Analysis
 - -20 dB Penalty
Space Environmental Test (SET) Project

Electromagnetic Environmental Effects (E³) System/Component Tests
Outline

• Introduction
 – Space Exploration [NASA (New) Role/Mission]
 • (New) Space Ship ~ “Orion”
 • (Old) Space Shuttle Replacement

• Orion Parachute Reentry ~ High-Altitude A/C Drop Tests
 – EMI Tests&Analysis
 • SoF (A/C ~ Orion Prototype)
 • RE/RI (RS/RV) ~ MIL-STDs
 – NASA/JSC-Houston(SAC)
 • (1) Components/(1m) (Un-Shielded)
 – Army/YPG-Yuma(Hanger)
 • (2) Parts Build-Up (Shielded Components/NF->1m)
 • (3) Full System Integration ~ Test Vehicle (Shielded Parts/FF->1m)

 – EMC Results

• Conclusions
• Test Types (RE/RS)

• Test Setups
 – Frequency Bands
 – Polarizations
 – Positions

• Modes

• Test Limits

• Testing (Components): Semi-Anechoic Chamber (1m)

• Test Results
JSC: MIL-STD Tests

Radiated/Conducted (Emissions/Immunity)

<table>
<thead>
<tr>
<th>EMI Test</th>
<th>Description</th>
<th>EMI Test</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE01</td>
<td>30 Hz – 15 kHz Power Leads</td>
<td>CE03</td>
<td>15 kHz – 50 MHz Power Leads</td>
</tr>
<tr>
<td>CE07</td>
<td>DC Power Leads Spikes Time Domain</td>
<td>CE07</td>
<td>DC Power Leads Spikes Time Domain</td>
</tr>
<tr>
<td>RE02</td>
<td>14 kHz – 10 GHz Electric Field</td>
<td>RE02</td>
<td>14 kHz – 10 GHz Electric Field</td>
</tr>
<tr>
<td>CS01</td>
<td>30 Hz – 50 kHz Power Leads</td>
<td>CS01</td>
<td>30 Hz – 50 kHz Power Leads</td>
</tr>
<tr>
<td>CS02</td>
<td>50 kHz – 50 MHz Power Leads</td>
<td>CS02</td>
<td>50 kHz – 50 MHz Power Leads</td>
</tr>
<tr>
<td>CS06</td>
<td>Spikes Power Leads</td>
<td>CS06</td>
<td>Spikes Power Leads</td>
</tr>
<tr>
<td>RS03</td>
<td>14 kHz – 20 GHz, Electric Field</td>
<td>RS03</td>
<td>14 kHz – 20 GHz, Electric Field</td>
</tr>
</tbody>
</table>

EMI Test Schedule

US Segment

- **CE** Low Frequency: 20 Hz – 10 kHz Power Leads
- **CE RF**: 10 kHz – 100 MHz Power Leads
- **RE**: 10 kHz – 1 GHz Electric Field
- **CS** Low Frequency: 20 Hz – 10 kHz Power Leads
- **CS RF**: 10 kHz – 100 MHz Power Leads
- **RS**: 14 kHz – 20 GHz, Electric Field

Russian Segment

- **IEEE/EMC-Brazil PoliUSP 120426**
JSC: RE02/ISS

- 14 kHz – 15.5 GHz
Test Date: 05/24/2010 Test Time: 7:28 pm - 7:50 pm
Sec: 11.4 Steps 8-9 (RE02) Ambient Data (Met the requir.)

EUT NAME: RONAIAT 2 (EUT POSITION SERVO)
TEST CLASSIFICATION: Certification
TF.NO: TPS.NO: EVS-T-EDM-0099 WL1021037
TEST SITE: JSC 814A Rm. 1000
OPERATOR: Cynthia Highower, Charles Brooks
TEST SPECIFICATION: Radiation Emissions Space Station Spec. SSP57000
Frequency Range 14 kHz - 10 GHz 13.5 - 15.5 GHz
120Vac 10 amps fused ~ 5.9 amps meas

SCAN TABLE: "SSP30237 RE02"
Short Description: SSP30237 RE02

<table>
<thead>
<tr>
<th>Start Frequency</th>
<th>Stop Frequency</th>
<th>Width</th>
<th>Meas.</th>
<th>IF</th>
<th>Transducer</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.0 kHz</td>
<td>14.0 kHz</td>
<td>50.0 kHz</td>
<td>MaxPeak</td>
<td>10.0 ms</td>
<td>200 Hz SAS-200/550-1 686</td>
</tr>
<tr>
<td>50.0 kHz</td>
<td>50.0 kHz</td>
<td>250.0 kHz</td>
<td>MaxPeak</td>
<td>10.0 ms</td>
<td>1 kHz SAS-200/550-1 686</td>
</tr>
<tr>
<td>250.0 kHz</td>
<td>250.0 kHz</td>
<td>30.0 MHz</td>
<td>MaxPeak</td>
<td>5.0 ms</td>
<td>10 kHz SAS-200/550-1 686</td>
</tr>
<tr>
<td>30.0 MHz</td>
<td>30.0 MHz</td>
<td>200.0 MHz</td>
<td>MaxPeak</td>
<td>5.0 ms</td>
<td>100 kHz 3104C 4708 4714</td>
</tr>
<tr>
<td>200.0 MHz</td>
<td>200.0 MHz</td>
<td>1.0 GHz</td>
<td>MaxPeak</td>
<td>5.0 ms</td>
<td>100 kHz 93490-1 1109 1110</td>
</tr>
<tr>
<td>1.0 GHz</td>
<td>1.0 GHz</td>
<td>50.0 kHz</td>
<td>MaxPeak</td>
<td>5.0 ms</td>
<td>1 MHz 3115 S/N 6059</td>
</tr>
<tr>
<td>13.5 GHz</td>
<td>13.5 GHz</td>
<td>5.0 MHz</td>
<td>MaxPeak</td>
<td>5.0 ms</td>
<td>10 MHz 3115 S/N 6059</td>
</tr>
</tbody>
</table>

Level [dBuV/m]

0 20 40 60 80 100

14k 40k 100k 300k 1M 2M 4M 10M 30M 100M 300M 1G 2G 4G 15.5G

IEEE/EMC-Brazil PoliUSP 120426
(1) JSC: RE02 Setup (ISS) ~ Bands
(1) JSC: RE02 Setup (ISS) ~ Positions

TEST SETUP BOUNDARY

\[N = \frac{X}{3} \text{ (in meters)} \]

Rounded Up to an Integer

EXAMPLE: \(X = 4 \text{ m} \rightarrow N = 2 \)
(1) JSC: RE102 Limit (SS)
(1) JSC: CPAS/PCDTV RE102 (SS) Test Setup
(1) JSC: RE102:CPAS/MDS
Test Setup
Test Bands

- 2-30 MHz (VP)
- 30-200 MHz (HP/VP)
- 200-1000 MHz (HP/VP)
- 1-18 GHz (HP/VP)
(1) JSC: CPAS Test/Analysis

- **Equipment**
 - PCDTV Tray (Unshielded)
 - MDS Tray (Unshielded)
 - Instrumentation Tray (Unshielded)
 - A/C Tray (Unshielded)
 - Video Tray (Unshielded)
 - Cameras (Unshielded)

- **Measurements**
 - RE02
(1) JSC: CPAS RE102 (SS) (2–30 MHz)
(1) JSC: CPAS RE102 (SS) (30-200 MHz)
(1) JSC: CPAS RE102 (SS) (200-1000 MHz)
(1) JSC: CPAS RE102 (SS) (1-18 GHz)
(1) JSC: RE102 Limit (SS) w/o Shielding
(1) JSC: RE102 Limit (SS) w/o Shielding
(1) JSC: Shielding
(1) JSC: CPAS RE102 (SS) (30-200 MHz)
(1) JSC: CPAS RE102 (SS) (200-1000 MHz)
(1) JSC: CPAS RE102 (SS) (1-18 GHz)
(1) JSC: CPAS Shielding Interconnections
(1) JSC: CPAS Shielding Remote Control Wires
TEST DATE: 05/19/2011 TEST TIME: 2:30 pm - 4:44 pm
The Orion Capsule Parachute Assembly System (CPAS)

TEST CLASSIFICATION: Safety of Flight Battery Operated
TF.NO: W.O.NO: EVS-11-EMC-007p EMCEO-11-011
TEST SITE: SRC B14 Room 1000 Cynthia Nightower
OPERATOR: TEST SPECIFICATION: Radiated Emission MIL-STD-461E Freq. Range 2 MHz - 1GHz
Graph Colors: 1. Black 2-3MHz 2. Blue 30-200MHz H/P 3. Red 30-200MHz V/F
Graph Colors: 4. Grey 200-1GHz H/P p1 5. Green 200-1GHz V/F p1
Graph Colors: 6. Lt Blue 200-1GHz H/P p2 7. Violet 200-1GHz V/F p2

SCAN TABLE: "MIL-STD-461E RE102"
Start Stop Step Detector Meas. IF Transducer
Frequency Frequency Width
10.0 kHz 150.0 kHz 500.0 Hz MaxPeak 15.0 ms 1 kHz SAS-200/550-1 686
150.0 kHz 30.0 MHz 5.0 kHz MaxPeak 15.0 ms 10 kHz SAS-200/550-1 686
30.0 MHz 200.0 MHz 50.0 kHz MaxPeak 15.0 ms 100 kHz 3104C 4708 4714
200.0 MHz 1.0 GHz 50.0 kHz MaxPeak 15.0 ms 100 kHz 3106 S/N 2824
1.0 GHz 16.0 GHz 500.0 kHz MaxPeak 15.0 ms 1 MHz 3115 S/N 6059

Level [dBuV/m]

IEEE/EMC-Brazil PoliUSP 120426
TEST DATE: 06/3-4/2011 CPAS Completely Foiled

The Orion Capsule Parachute Assembly System (CPAS)

TEST CLASSIFICATION: Safety of Flight Battery Operated
TR.NO: W.O.NO: EV5-11-EMC-007P EMCEO-11-011
TEST SITE: JSC BL4 Rm. 1000
OPERATOR: Cynthia Nightower

TEST SPECIFICATION: Radiated Emission MIL-STD-461E Freq. Range 2 MHz - 1GHz
Graph Colors: 1. Black 0-20MHz 2. Blue 20-200MHz H/P 3. Red 30-200MHz V/P
Graph Colors: 4. Grey 200-1GHz H/P p1 5. Green 200-1GHz V/P p1
Graph Colors: 6. Lt Blue 200-1GHz H/P p2 7. Violet 200-1GHz V/P p2

SCAN TABLE: "MIL-STD-461E RE102"

<table>
<thead>
<tr>
<th>Start</th>
<th>Stop</th>
<th>Step</th>
<th>Detector</th>
<th>Measure</th>
<th>IF Transducer</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.0 kHz</td>
<td>150.0 kHz</td>
<td>50.0 kHz</td>
<td>MaxPeak</td>
<td>15.0 ms</td>
<td>1 kHz</td>
</tr>
<tr>
<td>100.0 kHz</td>
<td>30.0 kHz</td>
<td>5.0 kHz</td>
<td>MaxPeak</td>
<td>15.0 ms</td>
<td>10 kHz</td>
</tr>
<tr>
<td>30.0 MHz</td>
<td>200.0 MHz</td>
<td>50.0 kHz</td>
<td>MaxPeak</td>
<td>15.0 ms</td>
<td>100 kHz</td>
</tr>
<tr>
<td>200.0 MHz</td>
<td>1.0 GHz</td>
<td>50.0 kHz</td>
<td>MaxPeak</td>
<td>15.0 ms</td>
<td>100 kHz</td>
</tr>
<tr>
<td>1.0 GHz</td>
<td>18.0 GHz</td>
<td>500.0 kHz</td>
<td>MaxPeak</td>
<td>15.0 ms</td>
<td>1 MHz</td>
</tr>
</tbody>
</table>

Level [dBuV/m]

![Graph of Level vs Frequency]

Page 1/1 6/29/2011 11:23AM

(1) JSC: RE102 Limit (SS) w/ Shielding
(1) JSC: RE102 Limit (SS) w/o Shielding
(1) JSC: RE102 Limit (SS) w/ Shielding
Outline

• Introduction
 – Space Exploration [NASA (New) Role/Mission]
 • (New) Space Ship ~ “Orion”
 • (Old) Space Shuttle Replacement

• Orion Parachute Reentry ~ High-Altitude A/C Drop Tests
 – EMI Tests
 • SoF (A/C ~ Orion Prototype)
 • RE/RI (RS/RV) ~ MIL-STDs
 – NASA/JSC-Houston(SAC)
 • (1) Components/(1m) (Un-Shielded)
 – Army/YPG-Yuma(Hanger)
 • (2) Parts Build-Up (Shielded Components/NF->1m)
 • (3) Full System Integration ~ Test Vehicle (Shielded Parts/FF->1m)

– EMC Results

• Conclusions
(2) YPG/DART: CPAS Sled/Tub Tests
(2) YPG/DART: DART Tube
(2) YPG/DART: Avionics Tray
(2) YPG/DART: Avionics Tray
Metal/Fabric/Mesh Shield
(2) YPG/DART: DART Integration
(2) YPG/DART: Parts Build-Up
• Unshielded/Shielded Component Tests
 – Apertures (Excitations)
 – B-Dot Probe
 – Spectrum Analyzer

• Analysis
 – Antenna Factor
 • Power ~ Voltage/Current (50 Ohms)
 • Electric Field
 – Magnetic Loop Antenna (Electrically Small)
 • Aperture (Uniform)
 • Waveguide ~ Dominant Mode (TE10/TE11)
 • Extrapolate (NF->1m)
 – Near Field
 – Far Field
(2) YPG/DART: DART Test/Analysis

- **Equipment**
 - PCDTV Tray (Shielded)
 - MDS Tray (Unshielded/Shielded)
 - Instrumentation Tray (Unshielded/Shielded)
 - A/C Tray
 - Video Tray (Unshielded/Shielded)
 - Cameras (Unshielded)

- **Measurements**
 - Discrete Spectrum
 - SNR
 - Ambient Background Noise Floor
 - Reference Level
(2) YPG/DART: CPAS/PCDTV B-Dot Probe ~ Aperture Shielded

DART#E1S: (5/8” OD) Circular-Hole/Shielded

Aperture
Uniform/ Aperture-Rectangular/Ground-Plane
Uniform/ Aperture-Cylindrical/Ground-Plane
aperture (x₀, y₀) = 0.55478" x 0.55478"
shield = 0 (mils)
fringing = 0 (%)
marginal (analysis) = 20 (dB)

E-Field (dBuV/m) ~ RE102/Limit

Frequency (MHz)

RE102-Limit
Mode#1: Direct ~ Aperture
Mode#2: Indirect ~ WG
(2) YPG/DART: CPAS/PCDTV
B-Dot Probe ~ Aperture Shielded

CPAS/PCDTV
[2011/11/8(13:58:56)]
Aperture
Uniform/Aperture-Rectangular/Ground-Plane
Uniform/Aperture-Cylindrical/Ground-Plane
aperture(x₀,y₀) = 1.3293"x1.3293"
signal = 0(mils)
fringing = 0(%)
margin(analysis) = 20(dB)
(2) YPG/DART: CPAS/PCDTV
B-Dot Probe ~ Aperture Shielded

CPAS/PCDTV
[2011/11/8(14:18:24)]
Aperture
Uniform/Aperture-Rectangular/Ground-Plane
Uniform/Aperture-Cylindrical/Ground-Plane
aperture(xo,yo) =4.6527"x4.6527"
shield =0(mils)
fringing =0(\%)
margin(analysis)=20(dB)
(2) YPG/DART: CPAS/PCDTV
B-Dot Probe ~ Aperture Shielded

CPAS/PCDTV
[2011/11/8(16:26:11)]
Aperture
Uniform/Aperture-Rectangular/Ground-Plane
Uniform/Aperture-Cylindrical/Ground-Plane
aperture(x₀,y₀) = 12"x3"
shield = 0(mils)
fringing = 0(%)
margin(analysis) = 20(dB)
(2) YPG/DART: CPAS/PCDTV
B-Dot Probe ~ Aperture Shielded

CPAS/PCDTV [2011/11/8(16:43:29)]
Aperture
Uniform/Aperture-Rectangular/Ground-Plane
Uniform/Aperture-Cylindrical/Ground-Plane
aperture(xo,yo) = 18"x12"
shield = 0(mils)
fringing = 0(%)
margin(analysis) = 20(dB)
(2) YPG/DART: CPAS/PCDTV
B-Dot Probe ~ Aperture Shielded

DART#E6S:(1-1/2"x2")Cable-Coupler/Shielded

- CPAS/PCDTV [2011/11/8(18:13:22)]
- Aperture
- Uniform/Aperture-Rectangular/Ground-Plane
- Uniform/Aperture-Cylindrical/Ground-Plane
- aperture(xo,yo) = 2"x1.5"
- shield = 0(mils)
- fringing = 0(%)
- margin(analysis) = 20(dB)

E-Field(dB) vs. RE102/Limit

Frequency(MHz)

RE102-Limit
Mode#1: Direct~Aperture
Mode#2: Indirect~WG
(2) YPG/DART: CPAS/PCDTV
B-Dot Probe ~ Aperture Shielded

CPAS/PCDTV
[2011/11/8(18:28:15)]
Aperture
Uniform/Aperture-Rectangular/Ground-Plane
Uniform/Aperture-Cylindrical/Ground-Plane
aperture(x₀,y₀) = 10.5" x 5.75"
shield = 0 (mils)
fringing = 0 (%)
margin (analysis) = 20 (dB)

E-Field (dB) vs. Frequency (MHz)

- Mode #1: Direct ~ Aperture
- Mode #2: Indirect ~ WG
(2) YPG/DART: CPAS/PCDTV
B-Dot Probe ~ Aperture Shielded

CPAS/PCDTV
[2011/11/8(18:57:59)]
Aperture
Uniform/Aperture-Rectangular/Ground-Plane
Uniform/Aperture-Cylindrical/Ground-Plane
aperture(x₀,y₀) = 11.75"x3"
shield = 0(mils)
fringing = 0(%)
margin(analysis) = 20(dB)
(2) YPG/DART: CPAS/PCDTV

B-Dot Probe ~ Aperture Shielded

CPAS/PCDTV
[2011/11/8(19:30:47)]
Aperture
Uniform/Aperture-Rectangular/Ground-Plane
Uniform/Aperture-Cylindrical/Ground-Plane

aperture(xo,yo) = 2" x 1.5"
shield = 0(mils)
fringing = 0(%)
margin(analysis) = 20(dB)
(2) YPG/DART: CPAS/PCDTV
B-Dot Probe ~ Aperture Shielded

DART#E10S: (1-1/2" x 2") Cable-Coupler/Shielded

E-Field (dB) ~ RE102/Limit

Frequency (MHz)

- RE102-Limit
- Mode#1: Direct ~ Aperture
- Mode#2: Indirect ~ WG

Aperture
Uniform/Aperture-Rectangular/Ground-Plane
Uniform/Aperture-Cylindrical/Ground-Plane
aperture (x₀, y₀) = 2" x 1.5"
shield = 0 (mils)
fringing = 0 (%)
margin (analysis) = 20 (dB)
(2) YPG/DART: CPAS/PCDTV
B-Dot Probe ~ Aperture Shielded

CPAS/PCDTV/Shielded-YPG19JUL11[2011/11/8(20:8:9)]
DART#E11S:(2-1/4"x5-1/4")SemiCircular-2Holes/Shielded

- Uniform/Aperture-Rectangular/Ground-Plane
- Uniform/Aperture-Cylindrical/Ground-Plane
- aperture \((x_0,y_0) = 4.6527" \times 4.6527"
- shield = 0(mils)
- fringing = 0(%)
- margin (analysis) = 20(dB)

E-Field\((dB)_{\mu m/m}\) ~ RE102/Limit

Frequency(MHz)

- RE102-Limit
- Mode#1: Direct~Aperture
- Mode#2: Indirect~WG
(2) YPG/DART: CPAS/PCDTV
B-Dot Probe ~ Aperture Shielded
“Starboard” Side Apertures

<table>
<thead>
<tr>
<th>Number</th>
<th>Description</th>
<th>RE102 Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>DART E1S</td>
<td>(5/8"OD)Circular-Hole/Shielded</td>
<td>Pass/Pass</td>
</tr>
<tr>
<td>DART E2S</td>
<td>(1-1/2"OD)Circular-Hole/Shielded</td>
<td>Pass/Pass</td>
</tr>
<tr>
<td>DART E3S</td>
<td>(2-1/4"x5-1/4")SemiCircular-2Holes/Shielded</td>
<td>Pass/Pass</td>
</tr>
<tr>
<td>DART E4S</td>
<td>(12"x3")Hatch-Cover/Shielded</td>
<td>Pass/Fail</td>
</tr>
<tr>
<td>DART E5S</td>
<td>(18"x12")Hatch-Cover/Shielded</td>
<td>Fail/Fail</td>
</tr>
<tr>
<td>DART E6S</td>
<td>(1-1/2"x2")Cable-Coupler/Shielded</td>
<td>Pass/Pass</td>
</tr>
<tr>
<td>DART E7S</td>
<td>(10-1/2"x5-3/4")Hatch-Cover/Shielded</td>
<td>Fail/Fail</td>
</tr>
<tr>
<td>DART E8S</td>
<td>(11-3/4"x3")Hatch-Cover/Pin-Rack/Shielded</td>
<td>Fail/Fail</td>
</tr>
<tr>
<td>DART E9S</td>
<td>(1-1/2"x2")Cable-Coupler/Shielded</td>
<td>Pass/Pass</td>
</tr>
<tr>
<td>DART E10S</td>
<td>(1-1/2"x2")Cable-Coupler/Shielded</td>
<td>Pass/Pass</td>
</tr>
<tr>
<td>DART E11S</td>
<td>(2-1/4"x5-1/4")SemiCircular-2Holes/Shielded</td>
<td>Pass/Pass</td>
</tr>
<tr>
<td>DART E12S</td>
<td>(1-1/2"OD)Circular-Hole/Shielded</td>
<td>Pass/Pass</td>
</tr>
</tbody>
</table>

“Port” Side Apertures

<table>
<thead>
<tr>
<th>Number</th>
<th>Description</th>
<th>RE102 Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>DART W1S</td>
<td>(1-1/2"OD)Circular-Hole/Shielded</td>
<td>Pass/Pass</td>
</tr>
<tr>
<td>DART W2S</td>
<td>(2-1/4"x5-1/4")SemiCircular-2Holes/Shielded</td>
<td>Pass/Pass</td>
</tr>
<tr>
<td>DART W3S</td>
<td>(10"x10")Hatch-Cover/Shielded</td>
<td>Fail/Fail</td>
</tr>
<tr>
<td>DART W4S</td>
<td>(12"x3")Hatch-Cover/Pin-Rack/Shielded</td>
<td>Pass/Fail</td>
</tr>
<tr>
<td>DART W5S</td>
<td>(3"OD)Circular-Hole/Shielded</td>
<td>Pass/Pass</td>
</tr>
<tr>
<td>DART W6S</td>
<td>(2-1/4"x5-1/4")SemiCircular-2Holes/Shielded</td>
<td>Pass/Pass</td>
</tr>
<tr>
<td>DART W7S</td>
<td>(1-1/2"OD)Circular-Hole/Shielded</td>
<td>Pass/Pass</td>
</tr>
</tbody>
</table>
(2) YPG/DART: CPAS/Video Cameras
B-Dot Probe ~ Aperture Shielded

CPAS/Video: YPG19JUL11[2011/12/20(14:21:36)]
DART#C1E:(1200/Outer-Circle)High-Speed/Camera(Unshielded)

- RE102-Limit
- Mode:Direct~Aperture(Pass/Fail)

CPAS/Video
[2011/12/20(14:21:36)]
Uniform/Aperture-Rectangular/Ground-Plane
Aperture\((x_0,y_0) = 6''\times6''\)
Standoff \(= 1.8415\,\text{mm}\)
Fringing \(= 0\,\%\)
Margin(Analysis)\(= 20\,\text{dB}\)
(2) YPG/DART: CPAS/Video Cameras
B-Dot Probe ~ Aperture Shielded

CPAS/Video: YPG19JUL11[2011/12/20(14:47:1)]
DART#:C2E:(1000/Inner-Circle)High-Speed/Camera(Unshielded)

CPAS/Video
[2011/12/20(14:47:1)]
Uniform/Aperture-Rectangular/Ground-Plane
Aperture(x₀,y₀) = 6"x6"
Standoff = 1.8415(mm)
Fringing = 0(\%)
Margin(Analysis)=20(dB)
(2) YPG/DART: CPAS/Video Cameras
B-Dot Probe ~ Aperture Shielded

CPAS/Video: YPG19JUL11 [2011/12/20 (15:49:2)]
DART#C3E: (1100/Inner-Circle) High-Speed/Camera (Unshielded)

- CPAS/Video
- [2011/12/20 (15:49:2)]
- Uniform/Aperture-Rectangular/Ground-Plane
- Aperture (x₀, y₀) = 6" x 6"
- Standoff = 1.8415 (mm)
- Fringing = 0 (%)
- Margin (Analysis) = 20 (dB)

E-Field (dBμV/m) ~ RE102/Limit

- RE102-Limit
- Mode: Direct ~ Aperture (Pass/Fail)
(2) YPG/DART: CPAS/Video Cameras B-Dot Probe ~ Aperture Shielded

CPAS/Video: YPG19JUL11 [2011/12/20 (15:59:7)]
DART#C4E: (0100/Inner-Circle) Low-Speed/Camera (Unshielded)

- **RE102-Limit**
- **Mode: Direct ~ Aperture (Pass/Fail)**

CPAS/Video
[2011/12/20 (15:59:7)]
Uniform/Aperture-Rectangular/Ground-Plane
Aperture \((x_0, y_0) = 6'' \times 6''\)
Standoff \(= 1.8415 \text{ (mm)}\)
Fringing \(= 0 \%\)
Margin (Analysis) \(= 20 \text{ (dB)}\)

E-Field (dB) \(\sim\) **RE102/Limit**

Frequency (MHz)
(2) YPG/DART: CPAS/Video Cameras
B-Dot Probe ~ Aperture Shielded

CPAS/Video: YPG19JUL11 [2011/12/20(16:16:23)]
DART#C5E: (0500/Inner-Circle) Low-Speed/Camera (Unshielded)

- RE102-Limit
- Mode: Direct ~ Aperture (Pass/Fail)

Uniform/Aperture-Rectangular/Ground-Plane
Aperture \((x_o, y_o) = 6" \times 6"
Standoff \(= 1.8415\) (mm)
Fringing \(= 0\) (%)
Margin (Analysis) \(= 20\) (dB)

E-Field (dB) \(\sim RE102/Limit\)
Frequency (MHz)
(2) YPG/DART: CPAS/Video Cameras
B-Dot Probe ~ Aperture Shielded
Video-Cameras AFT/“North” Side Apertures

<table>
<thead>
<tr>
<th>Number</th>
<th>Description</th>
<th>RE102 Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>DART C1E</td>
<td>(6”x6”)(1200/Outer-Ring)High-Speed (Unshielded)</td>
<td>Fail</td>
</tr>
<tr>
<td>DART C2E</td>
<td>(6”x6”)(1000/Inner-Ring)High-Speed (Unshielded)</td>
<td>Fail</td>
</tr>
<tr>
<td>DART C3E</td>
<td>(6”x6”)(1100/Inner-Ring)High-Speed (Unshielded)</td>
<td>Fail</td>
</tr>
<tr>
<td>DART C4E</td>
<td>(6”x6”)(0100/Inner-Ring)Low-Speed (Unshielded)</td>
<td>Fail</td>
</tr>
<tr>
<td>DART C5E</td>
<td>(6”x6”)(0500/Inner-Ring)Low-Speed (Unshielded)</td>
<td>Fail</td>
</tr>
<tr>
<td>DART C6E</td>
<td>(6”x6”)(0900/Inner-Ring)Low-Speed (Unshielded)</td>
<td>Fail</td>
</tr>
</tbody>
</table>
(2) YPG/DART: CPAS/MDS
Aperture ~ Primary/Unshielded
(2) YPG/DART: CPAS/MDS
Aperture ~ Primary/Unshielded
(2) YPG/DART: CPAS/MDS

Aperture ~ Primary/Unshielded

CPAS/MDS: YPG25JUL11 [2011/12/19(15:20:40)]
DART#P2E: Primary-Tray~Initiator-Pins(Unshielded)

- RE102-Limit
- Mode#1: Direct~Aperture

CPAS/MDS [2011/12/19(15:20:40)]

Uniform/Aperture-Rectangular/Ground-Plane

- aperture(xo,yo) = 5" x 2"
- standoff = 1.8415 (mm)
- fringing = 0 (%)
- margin(analysis) = 20 (dB)

E-Field(dB)_uv/_m vs Frequency(MHz)
(2) YPG/DART: CPAS/MDS
Aperture ~ Primary/Unshielded

DART#P3E:Primary-Tray~Ethernet/1st-Motion/Battery-Charger(Unshielded)

- RE102-Limit
- Mode#1: Direct~Aperture

Uniform/Aperture-Rectangular/Ground-Plane
aperture(\(x_0, y_0\)) = 13.25" x 6.412"
standoff = 1.8415(mm)
fringing = 0(\%)
margin(analysis) = 20(dB)
(2) YPG/DART: CPAS/MDS
Aperture ~ Primary/Unshielded
(2) YPG/DART: CPAS/MDS
Aperture ~ Primary/Unshielded

DART#P5E: Primary-Tray~IST(Unshielded)

CPAS/MDS
[2011/12/19(16:23:31)]
Uniform/Aperture-Rectangular/Ground-Plane
aperture \((x_o,y_o) = 4.44\times 4.255''\)
standoff \(= 1.8415\) (mm)
fringing \(= 0\) (\%)
margin (analysis) = 20 (dB)
(2) YPG/DART: CPAS/MDS
Aperture ~ Primary/Unshielded

CPAS/MDS: YPG25JUL11 [2011/12/19(16:31:52)]
DART#P6E: Primary-Tray~Switch-Box(Unshielded)

CPAS/MDS
[2011/12/19(16:31:52)]
Uniform/Aperture-Rectangular/Ground-Plane
aperture (x0,y0) = 7" x 3"
standoff = 1.8415(mm)
fringing = 0(%)
margin (analysis) = 20(dB)
(2) YPG/DART: CPAS/MDS
Aperture ~ Primary/Unshielded

DART#P7E: Primary-Tray~CRIO(Unshielded)

Uniform/Aperture-Rectangular/Ground-Plane
aperture(xo,yo) = 10.453" x 3.469"
standoff = 1.8415(mm)
fringing = 0(%)
margin(analysis) = 20(dB)
(2) YPG/DART: CPAS/MDS
Aperture ~ Primary/Unshielded

CPAS/MDS: YPG10AUG11 [2011/12/13 (20:1:20)]
DART#PZ1S: Primary-Tray~Zipper/Front (Shielded)

- RE102-Limit
- Mode#1: Direct~Aperture

CPAS/MDS
[2011/12/13 (20:1:20)]
Uniform/Aperture-Rectangular/Ground-Plane
aperture (x_o, y_o) = 34"x1"
standoff = 8.1915 (mm)
fringing = 10 (%)
margin (analysis) = 20 (dB)
(2) YPG/DART: CPAS/MDS
Aperture ~ Primary/Unshielded

CPAS/MDS: YPG10AUG11 [2011/12/13 (20:23:48)]
DART#PZ2S: Primary-Tray ~ Zipper/Side/Left (Shielded)

CPAS/MDS
[2011/12/13 (20:23:48)]
Uniform/Aperture-Rectangular/Ground-Plane
aperture (x₀, y₀) = 22" x 1"
standoff = 8.1915 (mm)
fringing = 10 (%)
margin (analysis) = 20 (dB)
(2) YPG/DART: CPAS/MDS
Aperture ~ Primary/Unshielded

CPAS/MDS: YPG10AUG11 [2011/12/13 (20:35:29)]
DART#PZ3S: Primary-Tray ~ Zipper/Side/Right (Shielded)

Uniform/Aperture-Rectangular/Ground-Plane
aperture \((x_0, y_0) = 22" \times 1"
standoff \(= 8.1915 \text{ (mm)}
fringing \(= 10\%\)
margin (analysis) = 20 (dB)

E-Field (dB) \(\sim \) RE102/Limit

Frequency (MHz)

IEEE/EMC-Brazil PoliUSP 120426
(2) YPG/DART: CPAS/MDS
Aperture ~ Primary/Unshielded

CPAS/MDS: YPG10AUG11 [2011/12/13(20:52:15)]
DART#PB1S: Primary-Tray~Bead/Front(Shielded)

Uniform/Aperture-Rectangular/Ground-Plane
aperture \((x_0,y_0) = 34" \times 1"
standoff = 8.1915(mm)
fringing = 10(%)
margin(analysis) = 20(dB)
(2) YPG/DART: CPAS/MDS Aperture ~ Primary/Unshielded

CPAS/MDS: YPG10AUG11 [2011/12/13 (21:5:42)]
DART#PB2S: Primary-Tray~Bead/Side/Left (Shielded)

RE102-Limit

Mode#1: Direct~Aperture

Uniform/Aperture-Rectangular/Ground-Plane

aperture \((x_0, y_0) = 22'' \times 1''\)

standoff \(= 8.1915 (\text{mm})\)

fringing \(= 10(\%)\)

margin (analysis) = 20 (dB)

**E-Field (dB) ** ~ RE102/Limit

Frequency (MHz)

IEEE/EMC-Brazil PoliUSP 120426
(2) YPG/DART: CPAS/MDS
Aperture ~ Primary/Unshielded

CPAS/MDS: YPG10AUG11[2011/12/13(21:21:42)]
DART#PB3S: Primary-Tray~Bead/Side/Right(Shielded)

- **RE102-Limit**
- **Mode#1: Direct~Aperture**

CPAS/MDS:
[2011/12/13(21:21:42)]
Uniform/Aperture-Rectangular/Ground-Plane
aperture (x0,y0) = 22"x1"
standoff = 8.1915 (mm)
fringing = 10 (%) margin (analysis) = 20 (dB)
(2) YPG/DART: CPAS/MDS
Aperture ~ Primary/Unshielded

CPAS/MDS: YPG10AUG11[2011/12/13(21:33:11)]
DART#PB4S:Primary-Tray~Bead/Back(Shielded)

CPAS/MDS
[2011/12/13(21:33:11)]
Uniform/Aperture-Rectangular/Ground-Plane
aperture(xo,yo) = 34"x1"
standoff = 8.1915(mm)
fringing = 10(%)
margin(analysis)=20(dB)
(2) YPG/DART: YPG Drop Test C130/Extraction
(2) YPG/DART: YPG Drop Test
Chutes/Landing/Recovery
Outline

• Introduction
 – Space Exploration [NASA (New) Role/Mission]
 • (New) Space Ship ~ “Orion”
 • (Old) Space Shuttle Replacement

• Orion Parachute Reentry ~ High-Altitude A/C Drop Tests
 – EMI Tests
 • SoF (A/C ~ Orion Prototype)
 • RE/RI (RS/RV) ~ MIL-STDs
 – NASA/JSC-Houston(SAC)
 • (1) Components/(1m) (Un-Shielded)
 – Army/YPG-Yuma(Hanger)
 • (2) Parts Build-Up (Shielded Components/NF->1m)
 • (3) Full System Integration ~ Test Vehicle (Shielded Parts/FF->1m)

 – EMC Results

• Conclusions
(3) YPG/Capsule: CPAS RE02 (SS) Open Panels
(3) YPG/Capsule: CPAS RE02 (SS) Closed (0 Deg)
(3) YPG/Capsule: CPAS RE02 (SS) Closed (+30 Deg)
(3) YPG/Capsule: CPAS RE02 (SS) Closed (-30 Deg)
(3) YPG/Capsule: CPAS RE02 (SS) Separation Sled
(3) YPG/Capsule: Test/Analysis

• Test
 – Circular Scans
 – Probes/Hybrid

• Analysis
 – Extrapolated (FF->1m)
 – Attenuated
 – Antenna Factor
(2) YPG/DART: DART Test/Analysis

- **Equipment**
 - CPSS
 - Primary
 - Secondary
 - PTV
 - Open Panels (Unshielded)
 - Closed Panels (Shielded)
 - Cameras

- **Measurements**
 - Continuous Spectrum
 - Ambient Background Noise
 - Reference Level
(3) YPG/DART: CPSS Test/Analysis
HP/3m Secondary (30-1000 MHz)

CPAS/CPSS ~ 01/HP:3m/SN
Raw Measured Data

Power (Measured vs Ambient) [dBm]
-70 -65 -60 -55 -50 -45
10 100 1000
Frequency [MHz]

p_sut[dBmW]
p_amb[dBmW]
CPAS/CPSS ~ 01/HP:3m/SN
Converted Measured Data vs 461 RE102 Limit

Electric Field Intensity (dBµV/m)

- *fs_sut*[dBµV/m]
- *fs_amb*[dBµV/m]
- 461 Limit at 1 meter

Frequency (MHz)

10 100 1000
CPAS/CPSS ~ 01/HP:3m/SN
Adjusted Measured Data vs 461 RE102 Limit

Electric Field Intensity (dBµV/m)

- fs_sut_adj[dBµV/m]
- fs_amb_adj[dBµV/m]
- 461 Limit at 1 meter

Frequency (MHz)
(3) YPG/Capsule: CPSS Test/Analysis
HP/3m Secondary (30-1000 MHz)
(3) YPG/Capsule: CPSS Test/Analysis
HP/3m Secondary (30-1000 MHz)
(3) YPG/Capsule: CPSS Test/Analysis
VP/3m Primary (30-1000 MHz)
(3) YPG/Capsule: PTV Test/Analysis
HP/3m 360/Open (30-1000 MHz)

CPAS/PTV ~ 01O/HP:3m/360 (Open Panels)
Extracted Measured Data vs 461 RE102 Limit

EUT Noise, All Other Data is Ambient Noise

Frequency (MHz)

Electric Field Intensity (dBμV/m)

fs_sut_extr[dBμV/m]
461 Limit at 1 meter
(3) YPG/Capsule: PTV Test/Analysis VP/3m 180/Open (30-1000 MHz)

CPAS/PTV ~ 050/VP:3m/180 (Open Panels)
Extracted Measured Data vs 461 RE102 Limit

Electric Field Intensity [dBμV/m]

All Data is Ambient Noise

461 Limit at 1 meter
(3) YPG/Capsule: PTV Test/Analysis
HP/3m 360/Closed (30-1000 MHz)
(3) YPG/Capsule: PTV Test/Analysis VP/3m 180/Closed (30-1000 MHz)
(3) YPG: CPSS/PTV Test/Analysis VP/3m Secondary/Closed (30-1000 MHz)
(3) YPG: CPSS/PTV Test/Analysis
VP/3m Primary/Closed (30-1000 MHz)

CPAS/CPSS&PTV ~ 02/VP:3m/PN (Closed Panels)
Extracted Measured Data vs 461 RE102 Limit

- Electric Field Intensity [dBµV/m]
- Frequency [MHz]

Ambient Noise

- fs_sut_extr[dBµV/m]
- 461 Limit at 1 meter
(3) YPG/Capsule: CPAS C17/Load
• Experiments (EMI)
 – Avionics
 • Position/Velocity/Acceleration
 • Temperature/Pressure/Humidity
 • Loading(Forces/Torques)
 – Delivery System
 • Firing Events
 – Deploy
 – Release
 • Mortars/Cutters
 – Video
 • Cameras
(3) YPG/Capsule: YPG Drop Test C17

- SoF
(3) YPG/Capsule: YPG Drop Test
(3) YPG/Capsule: YPG Drop Test
Recovery/Repair/Refurbish/Reuse
Conclusion

• SoF Confirmed
 – Components
 – Build-Up
 – System

• Tests/Apertures
 – NF->1m Results
 – FF->1m Results

• Successful Drop Test
 – No Anomalies
 • C130/C17
 • CPAS (Shielding)