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Abstract  
The concern for reducing  aviation safety risk is 

rising as the National Airspace System in the United 

States transforms to the Next Generation Air 

Transportation System (NextGen).  The NASA 

Aviation Safety Program is committed to developing 

an effective aviation safety technology portfolio to 

meet the challenges of this transformation and to 

mitigate relevant safety risks.  The paper focuses on the 

reasoning of selecting Object-Oriented Bayesian 

Networks (OOBN) as the technique and commercial 

software for the accident modeling and portfolio 

assessment.  To illustrate the benefits of OOBN in a 

large and complex aviation accident model, the in-

flight Loss-of-Control Accident Framework (LOCAF) 

constructed as an influence diagram is presented.  An 

OOBN approach not only simplifies construction and 

maintenance of complex causal networks for the 

modelers, but also offers a well-organized hierarchical 

network that is easier for decision makers to exploit the 

model examining the effectiveness of risk mitigation 

strategies through technology insertions. 

 

Introduction 

The air transport system is fast growing; the public 

benefits from this continued growth depend on the safe, 

efficient and effective operations of air vehicles.  With 

significant demand in aircraft operations, the Next 

Generation Air Transportation System (NextGen) 

concept of operations are developed to transform the 

existing air travel system, achieving an operation of 

exceptional levels of  safety, flexibility, efficiency, and 

robustness in a more complex and demanding 

environment.  With the anticipated increase of travel 

and new operations in NextGen, aviation safety and 

risk which have always been issues of a great 

importance due to the inherent complexity and severe 

accident consequences now become all more pressing.  

 The overall goal of the NASA Aviation Safety 

Program (AvSP) is to “conduct cutting-edge research 

that will produce innovative concepts, tools, and 

technologies to improve the intrinsic safety attributes 

of current and future aircraft,” (Shin, 2011). The AvSP 

uses the results of systems analyses, assessments and 

studies for programmatic decision-making, safety 

research portfolio prioritization and communication. A 

qualitative system analysis of the NASA AvSP was 

conducted  to identify historic and future safety issues 

and to evaluate the potential impact of the AvSP 

technology portfolio on these issues (Jones et al., 

2010).  This qualitative assessment provided a better 

understanding of the potential impact of the AvSP  

technology portfolio on aviation safety, but was 

lacking  any quantitative analysis of the impact of these 

aviation technology products on safety risk mitigation.  

To this end, a quantitative analysis approach was 

needed that: (1) was flexible and robust to model 

complex aviation accidents and (2) provided the 

capability to assess the portfolio impact on the 

reduction of aviation system risk while the current air 

transportation system is transformed to NextGen 

operations.  

In this paper, a brief review is given to some 

commonly used aviation risk and safety 

methods/models as a path to select an appropriate 

probabilistic methodology and software package for 

the set purposes.  The object-oriented Bayesian Belief 

Network (OOBN) suggested in this paper lends itself  

to large and complex aviation accident modeling and 

technology portfolio assessment.  In addition to having 

all the features (inference and updates) as a traditional 

Bayesian network, the object-oriented concept allows 

modular, less-cluttered designs of a complex causal 

model in a dynamic environment.  To illustrate the 

benefits of applying OOBN, the paper includes a loss-

of-control (LOC) accident model constructed using 

Hugin Expert (Hugin, 2012) software
*
.  The 

technology portfolio evaluation is conducted through 

the incorporation of safety products as decision nodes 

in the model. The projected impact of the AvSP 

products on the accident risk is assessed by comparing 

the predicted likelihood values of LOC with and 

without the products.   
 

Overview of Aviation Risk and Safety 

Methods/Models  

Researchers at the  National Aerospace Laboratory 

of the Netherlands (NLR) identified more than 720 

safety methods (Everdij et al., 2010), and over 100 of 

these have been applied in aviation domains.  The 
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purpose of these qualitative and quantitative risk and 

safety methods/models is to discover and describe 

primary causes of aircraft accidents in order to prevent 

future accidents.  In addition, the causal 

methods/models can evaluate the benefits of different 

risk interventions from safety technologies. An 

exhaustive research of aviation safety methods/models 

(GAIN Working Group B, 2003; Netjasov and Janic, 

2008) is beyond the scope of this study.  However, the 

key concepts of some popular methods/models are 

briefly reviewed and compared in the context of the 

current objectives of aviation accident modeling and 

portfolio impact assessment.   

 

Methods. The Fault Tree (FT) method (Vesely et al., 

2002) is a top-down approach, starting with a top event 

that is a failure or a hazard with serious consequences, 

followed by several paths representing different 

combinations of events or causes described with logical 

operators (AND, OR, etc.).  The logic in FT is binary.  

The probability of occurrence and non-occurrence of 

each event is assigned, the probability of the top event 

is then computed.  The FT method is a causal analysis 

and is favored when combinations of failures are 

expected, and is mostly used for quantitative risk and 

reliability studies, such as the failure analysis of 

systems.   

The Event Tree (ET) method (Stamatelatos and 

Dezfuli, 2011) is a forward method beginning with an 

initiating event or condition.  ET is used to model 

chronological sequence of events and consequences (or 

outcomes) of the initiating event through a series of 

potential paths.  Each event has a finite set of states, 

commonly two states, with assigned probabilities, the 

probability of various possible outcomes can then be 

computed.  An ET is particularly useful in developing 

multiple safeguards to reduce the unwanted 

consequences of the initiating event.  ET is a 

consequence analysis and depicts the sequence 

dependencies, which differs from FT.  However, Event 

Trees are often used together with Fault Trees that 

analyze the causes of the hazardous event that initiates 

the accident sequence.   

An Event Sequence Diagram (ESD) method 

(Stamatelatos and Dezfuli, 2011) is a scenario analysis 

used to describe a set of possible risk scenarios 

originating from an initiating event.  The initiating 

event is typically an anomaly (event causing deviation 

from normal operation) or a system component failure.  

Along each scenario path, pivotal events are identified 

as either occurring or not occurring.   Each scenario 

leads to a final end state, indicating the outcome of that 

scenario.  The concept of an ESD is similar to an ET, 

both illustrate the progression of events over time.  

However, the scenarios are usually kept broad, the 

detailed causes or specificities of these events are not 

directly of interest at the scenario level.  An ESD, like 

ET, is often combined with FTs that model the details 

of initiating and pivotal events in ESD.   

A Bayesian Belief Network (BBN) is a directed 

acyclic graph that provides a network-based framework 

to represent causal models for reasoning under 

uncertainty (Korb and Nicholson, 2004).  A BBN 

consists of a set of nodes representing causal variables, 

and a set of the directed arcs (or links) connecting the 

nodes showing the causal dependencies. Each variable 

has a finite set of mutually exclusive states.  The causal 

relations between variables are expressed in terms of 

conditional probabilities.  The probability computation 

is based on Bayes’ theorem (Jensen and Nielsen, 

2007).  Unlike the FT and ET, the BBN is able to 

represent the multi-dependencies between causal 

factors that lead to the final consequence in complex 

systems.  Additionally, BBNs has been used as a 

decision-support tool through the application of the 

Bayesian Decision Theory and the Influence Diagram 

(ID) with decision nodes and utility nodes in the 

networks.  

 

Models. The Aviation System Risk Model (ASRM) 

(Luxhoj, 2004) is a decision support system designed 

to estimate the system risk and assess the impacts of 

new safety technologies insertions/ interventions using 

traditional BBNs and ID. The ASRM contains a 

collection of BBN models that model the interactions 

of aviation system risk factors focusing on the human-

induced causal factors. The Bayesian probability and 

decision theory are used to quantify the accident 

likelihood and to evaluate impacts of multiple new 

safety technology insertions/interventions. Models in 

ASRM are accident-based case models in selective 

aviation accident categories. 

The Causal Model for Air Transport Safety 

(CATS) models (Ale et al., 2009) the gate-to-gate 

causes of commercial air transport accidents and the 

safeguards in place to prevent hazards leading to 

accidents. The purpose of CATS is to quantify the risk 

of air transport estimating an accident probability per 

flight.  The CATS models the underlying causes in the 

complex aviation system by constructing separate 

causal models for each considered accident category 

(loss of control, collision, etc.) in each flight phase.  

The CATS combines three modeling techniques in a 

single model: ESDs, FTs and traditional BBNs.  The 

ESDs and the FTs are converted into BBNs and from 

that the integrated CATS BBN is built to compute the 

probability of an accident.    
The Quantitative Risk Assessment System 

(QRAS) (NASA HQ/OSMA, 2002) is a comprehensive 

PC-based Probabilistic Risk Assessment (PRA) tool for 

conducting an integrated system safety, reliability and 

risk assessment of safety critical systems.  QRAS 
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technical approach is to divide a complex system’s risk 

model into time-phases and to allow different failure 

modes being modeled in each operational phase along 

the mission time-line.  QRAS employs ESDs, ETs and 

FTs, and can aggregate the probabilities of all initiating 

events to obtain the probability of failure at various 

levels - system, subsystem, component, and failure 

mode.  QRAS includes a rich suite of quantification 

models to specify the probability distribution for the 

events, and the uncertainty distribution on the 

probability.  

While Fault Tree and Event Tree methods are 

common techniques for analyzing large complex 

integrated systems, their linear causal or time order 

approach fails to adequately represent the uncertainty 

and multi-dependencies between causal factors in a 

complex system like an aviation accident.  In contrast, 

Bayesian networks provide a framework that represents 

the logical multiple cause-effect relationships among 

factors (or variables) and captures the uncertainty in 

the dependencies between factors using conditional 

probabilities.  In addition to a rigorous mathematical 

treatment for complex accident causal modeling,  a 

BBN has the ability of being  an Influence Diagram as 

a decision tool to evaluate the effect of new safety 

technologies on the model.  Moreover, inference on a 

BBN can be conducted by entering the evidence when 

the knowledge of node states is obtained through other 

means, such as empirical evidence or experiential 

database.  Although there are some unique features in 

ASRM, CATS, and QRAS, their underlying 

methodologies and software tools are not readily 

applied to achieving the objectives of having 

generalized accident models inclusive of human- 

environment- and systems-induced causal factors, and 

of assessing the technology portfolio impact on the 

aviation safety.   In summary, the authors adopt the use 

of BBNs as the fundamental technique to model critical 

aviation safety issues and to assess AvSP technology 

portfolio on the safety risk reduction. 

 
The Choice of a BBN Software 

For the modeling exercise being considered, it 

needs a Bayesian causal modeling tool with a graphical 

front end for BBNs’ construction and a computational 

engine for the Bayesian analysis.  A variety of BBN 

software packages are available from both commercial 

vendors and the public-domain.   No attempt was made 

to provide a list of the Bayesian causal modeling tools 

or to rank these packages, instead (Korb and 

Nicholson, 2004) and (Murphy, 2012) are offered for 

learning more of the BBN software packages.  This 

section will focus on the desired features of a BBN tool 

for its intended use for the given task.  It is authors’ 

viewpoint that the following features are required or 

highly favored: 

(1) Influence diagrams capability:  BBNs can be 

extended with decision and utility nodes to 

form an influence diagram for decision 

making in the context of assessing technology 

portfolio impact and evaluating the aviation 

safety risk. 

(2) Modular and hierarchical capability:  BBNs 

for aviation accidents models  will be large 

and complex.  With modular designs, a 

complex system can be efficiently built by 

combining modules (or sub-models), which 

are constructed simultaneously by different 

modelers.  The structured methods of 

modularity and hierarchy help control the 

complexity and the development of large-

scale BBNs.  If a BBN has some structure or 

better organization, the computational 

performance is likely enhanced. 

(3) Computational efficiency/performance:  For a 

large complex network with many nodes and 

dependencies, the probabilistic calculations 

can be tedious and very difficult.  The 

software tool must implement efficient BBN 

analysis algorithms to solve complex 

problems.   

(4) Maturity: The tool should have undergone 

rigorous development and testing processes, 

and have proven record of its successful 

applications in a wide range of  modeling 

domains, including aviation areas.  

(5) Application Program Interface (API): For the 

potential task growth, it is desirable that the 

software’s API is available for different 

popular languages, such as C++, Java, Visual 

Basic, and can run on a broad platform, 

including Windows, Mac, and Linux 

operating systems.  The API enables a 

modeler to include BBN operations in his 

application programs, and allows the 

interaction between BBNs and applications, 

such as Microsoft Excel or Access.   

(6) Software maintenance and technical support: 

The tool should be well documented and 

maintained by the software developers to 

ensure the software’s integrity and quality.  A 

responsive and experienced technical support 

team is important to the end users. 

(7) Cost for multiple licenses at different user 

locations: It is envisioned that aviation 

accident modeling tasks are multiple and may 

be conducted by NASA personnel at different 

geographical locations.  The available license 

format and its cost-effectiveness are also in 

consideration.   

Based on the selection criteria for the intended use, 

the Hugin software has many advantages over 
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competing tools, including Netica and BNet.  The 

attractive merits of Hugin include the ability to 

represent and efficiently solve complex decision-

making problems with influence diagrams, and to 

allow complex domains to be described in terms of 

inter-related modules using object-oriented BBNs 

(OOBNs).  The following section will introduce the 

key concepts of an OOBN, and demonstrate its 

application in a loss-of-control accident modeling.   

 

 

Application of OOBNs for Accident Modeling and 

Portfolio Assessment 

An OOBN (Koller and Pfeffer, 1997) is an 

extension to BBNs with a set of basic object (i.e., a 

standard variable node) and complex object (i.e., an 

instance node).  An instance node is an instantiation of 

a network class, or an abstraction of a network 

fragment into a single unit.  An instance node connects 

to other nodes via interface nodes– input and output 

nodes.   Represented as an instance node, the 

encapsulated network (or sub-model) becomes 

modular.  Modularity facilitates the reuse of nodes and 

network fragments of an object in the same network or 

a different network. Another trademark of the object-

oriented approach is the ability to define classes that 

inherit the properties of other classes plus additional 

attributes of its own.  Furthermore, in contrast to a 

traditional BBN represents only the probabilistic 

relationship among a set of variables at some point in 

time, an OOBN is able to model temporal relationships 

among variables for dynamic structures.  In summary, 

the salient features of OOBN modeling include 

abstraction, encapsulation, hierarchy, inheritance, 

interface, and modularity.   

Exhibit 1 is a top-level depiction of the generalized  

loss-of-control accident framework (LOCAF) 

constructed by the Hugin software.  LOCAF is a large 

and complex causal model comprising causal and 

contributing factors to the loss-of-control accidents 

from three different domains, namely, the aircraft 

system, human (both flight crew and ground 

personnel), and external atmospheric environment.  

The details of the development, quantification, and 

analysis of LOCAF are given in (Ancel and Shih, 

2012) and (Luxhoj et al., 2012).  The discussion here is 

centered on illustrating the application of OOBN 

concepts and BBN decision-making in LOCAF. In 

addition to the oval-shaped chance nodes for standard 

random variables, the top-level topology of LOCAF 

includes three instance nodes displayed as rounded 

rectangles representing encapsulated sub-networks. 

Every instance node has a descriptive node name 

representing the internal sub-network that is hidden 

from the top-level view.  Meanwhile, every instance 

node contains interface nodes that are visible and link 

to other nodes in the top-level view or/and other sub-

networks.  In this example, three sub-networks are 

regarded as three sub-models in BBNs, respectively 

describing the causal contributions to the LOC due to 

the flight crew conditions before entering the cockpit, 

environmental conditions, and aircraft system 

component failures.  

Exhibit 2 displays the environmental sub-network, 

while Exhibit 3 and Error! Reference source not 

found. show two separate sub-models in the System 

Component Failure (SCF) domains in LOCAF, 

accounting for the causal contributions from the 

aircraft systems and maintenance.  There are two 

output nodes drawn with thick borders in the 

environmental sub-model, which are made visible in 

the green-colored instance node of Exhibit 1, the top-

level model, and of Exhibit 3, one of SCF sub-models. 

It should be noted that only one output node (and a 

different one) is used to connect to other node(s), 

respectively, in Exhibit 1 and Exhibit 3.  This 

demonstrates the modularity and reusability of the 

environmental sub-model, as well as the network 

flexibility that simplifies the model construction.  The 

concepts of hierarchy and multi-level of abstraction are 

manifested in system component failure instance node 

(in Exhibit 1) to which two deeper levels of sub-

networks are attached.  The successively embeded sub-

layer networks are shown in Error! Reference source 

not found., and then Exhibit 3 and Error! Reference 

source not found..  Applying this OOBN approach, 

LOCAF top-level view reveals all the essential 

components of this model, and spares the overall 

complexity of the network for better communication 

and explanations.  The complex sub-models are hidden 

in the instance nodes.  Models reusability and 

techniques of encapsulation lessen the amount of work 

involved in building such a large network. 
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Exhibit 1.  Top-level Depiction of the Generalized Loss-of-control Accident Framework (LOCAF). 

 

 
 

 

Exhibit 2.  Environmental Sub-model for LOCAF. 
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Exhibit 3.  System Component Failure Sub-model for Aircraft System. 
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Exhibit 5.  Multi-level Abstraction of the System 

Component Failure Network. 

 
 

 

There are many new safety products in the 

technology portfolio, the intervention/mitigation of 

these safety products is introduced into LOCAF as 

rectangular-shaped decision nodes. With the products 

in decision nodes, the model is now referred to as an 

Influence Diagram.  A decision node is connected to 

those causal variable nodes whose probability 

distributions are directly affected by the decision policy 

of either implemented or not-implemented.  As shown 

in Exhibit 1- Exhibit 3, the decision nodes appear in 

both top-level network and sub-networks in LOCAF.  

The comparisons of computed likelihood values of the 

occurrence of LOC (LOC Accident node in Exhibit 1) 

with and without safety products give the projected 

impact of safety technologies on the LOC risk.  In 

addition, the sensitivity analysis can be performed on 

LOCAF to rank the most influential causal nodes to the 

LOC node.  This information helps strategize the safety 

technology investment and establish an effective  

technology portfolio. 

 

Conclusions   
NASA AvSP takes on the challenge of developing  

a technology portfolio to meet the anticipated increase 

Exhibit 4.  System Component Failure Sub-model for Maintenance. 
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in aviation safety issues, particularly, arising from the 

transformation of current airspace transport system to 

the NextGen operation.  This paper presented a brief 

review on aviation risk and safety methods/models, and 

the criteria for selecting an appropriate methodology 

and software tool for the aviation accident modeling 

and portfolio impact assessment.   The Object-Oriented 

Bayesian Belief Network (OOBN) approach was  very 

suitable when modeling complex aviation accidents (or 

safety issues) that are influenced by interactions of 

different domains, including human operators, 

atmospheric environment, and aircraft systems and 

components. Techniques of encapsulation and model 

reusability add to the simplification, flexibility and 

portability in model development.  For an illustrative 

purpose, a loss-of-control accident model was 

introduced to show the benefits of OOBN and the 

evaluation of safety technology portfolio.  
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