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Abstract 

 

Zero dimensional (0D) hydrodynamic models, provide a simple and quick way to 

study the thermal evolution of coronal loops subjected to time-dependent heating. 

This paper presents a comparison of a number of 0D models that have been published 

in the past and is intended to provide a guide for those interested in either using the 

old models or developing new ones. The principal difference between the models is 

the way the exchange of mass and energy between corona, transition region and 

chromosphere is treated, as plasma cycles into and out of a loop during a heating-

cooling cycle. It is shown that models based on the principles of mass and energy 

conservation can give satisfactory results at some, or, in the case of the Enthalpy 

Based Thermal Evolution of Loops (EBTEL) model, all stages of the loop evolution. 

Empirical models can lead to low coronal densities, spurious delays between the peak 

density and temperature, and, for short heating pulses, overly short loop lifetimes.  
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1. Introduction 

 

Modelling the response of coronal loops to time-dependent flare or flare-like heating 

has a long history (e.g. Peres, 2000). The most common approach is to study the 

plasma behaviour along a magnetic field line (or flux bundle, or strand, or loop) with 

a one dimensional (1D) hydrodynamic (hydro) code (e.g. Mariska et al., 1982; 

Pallavicini et al., 1983; McClymont and Canfield, 1983; Klimchuk et al., 1987; 

Hansteen, 1993; Bradshaw and Mason, 2003). This has led to a good generic 

understanding of how the loop fills with plasma in response to heating, and how, once 

the heating ceases, the corona drains.  

 

While 1D hydro codes provide a point by point description of a loop’s evolution, 

there are drawbacks, the most serious being the restriction imposed on the timestep 

due to thermal conduction in the transition region, especially in tenuous loops, and the 

treatment of chromospheric radiation (see Introduction of Paper 2). As 1D codes 

become more complicated, with adaptive grids and the tracking of multiple ionisation 

states, considerable expertise is needed to run them and interpret their output. Thus 

workers interested in a quick estimate of loop evolution may not have the time, 

inclination, or expertise to carry out a 1D hydro simulation and there is a need for 

hydro models that can be run quickly and interpreted easily. This led to the 

development of zero-dimensional (0D) models which deal with plasma quantities that 

are either averaged over a loop, or evaluated at a specific point, such as the apex.  

 

The key to the success of a 0D model is the understanding of the exchange of material 

between the hot corona and cooler transition region (TR) and chromosphere, as 

discussed in Section 2. We have recently developed a 0D model that we believe 

addresses this problem in a realistic way (Klimchuk et al., 2008; Cargill et al., 2012, 

hereafter Papers 1 and 2 respectively). In the course of this work, we found it useful to 

compare and contrast our approach with other 0D models developed over the past 

three decades, and a brief initial assessment of this appeared in Section 5 of Paper 1. 

 

The purpose of this paper is to carry out a full comparison of 0D models by solving 

identical problems with various models. The motivation is as follows: (i) by analysing 

the assumptions used in each model, and their successes and failures, one can identify 
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the essential physics in loop evolution. (ii) For workers interested in running 0D 

models, it is useful to have an assessment of how each approach performs on a 

specific problem and (iii) the paper aims to help those who wish to develop future 0D 

models avoid pitfalls. This paper is not intended to be overly critical of older models, 

which in some cases introduced new ways of approaching 0D modelling, and also 

contain enlightening discussion. Rather it should be viewed in the spirit of how the 

assumptions implemented in the past can used to build better 0D models. 

 

Section 2 provides an overview of the basic formulation of 0D models. Several 

models are examined, as proposed by Kuin and Martens (1982: KM82), Fisher and 

Hawley (1990: FH90), Kopp and Poletto (1993: KP93), Cargill (1994: C94), 

Klimchuk et al (2008) and Cargill et al (2012: EBTEL), Aschwanden and Tsiklauri 

(2009: AT09), and are described in Section 3 and Appendices A and B. Section 4  

presents extensive results for the models and compares them with results from the 1D 

hydro Hydrad code (Bradshaw and Mason, 2003; Bradshaw and Cargill, 2006).  

 

2. 0D Models: Introduction 

 

The response of loop plasma to a short burst of heating is well known, and follows 

three phases. (i) During the initial heating, the temperature rises, but is limited by 

thermal conduction. The TR and upper chromosphere are unable to radiate away the 

downward heat flux, so material there is heated and moves into the corona 

(“evaporation”: Antiochos and Sturrock, 1978). (ii) As the heating diminishes, the 

temperature decreases from its maximum value. The TR can now radiate away more 

of the heat flux since its density is higher, so that the upflow decreases. In this phase, 

the increasing coronal density makes radiation more important, and eventually 

coronal radiative losses exceed those due to conduction. The peak coronal density 

corresponds approximately to the transition between conductive-dominated and 

radiative-dominated cooling (e.g. Cargill, 1994, Cargill et al., 1995). (iii) As the loop 

continues to cool, the heat flux is now too small to power the TR radiation. Instead, a 

downward enthalpy flux is established, and the corona is drained (Antiochos, 1980; 

Serio et al., 1991; Bradshaw and Cargill, 2010a,b). In a 1D model, this sequence of 

events can be followed easily, provided the transition region is resolved adequately 
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and there is a large enough mass reservoir in the initial upper chromosphere. It is this 

sequence of events that a 0D model must address. 

 

The evolution of a loop of half-length L is described by the 1D equations of mass, 

momentum and energy conservation along a field line: 
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where v is the velocity, )1/(  pE , )/(2/5

0 sTTFc   is the heat flux, Q(s,t) is 

a heating function that includes both steady and time-dependent components, 

TT  )( is the radiative loss function in an optically thin plasma, and s is the 

spatial coordinate along the magnetic field. There is also an equation of state: 

nkTp 2 . Subsonic flows are assumed in all the 0D models discussed here, so the 

terms proportional to V
2
 or higher are already neglected in Eq (2) and (3). 

 

There are two approaches to 0D modelling. One solves Eq (1) – (3) by integrating 

over the loop (or part of the loop) to construct a solution for either average or apex 

quantities (KM82, KP93, EBTEL). The second splits the evolution into distinct 

temporal phases in which different physical processes dominate, that are then joined 

together (FH90, C94, AT09) to form a piecewise continuous solution. This second 

approach does not preclude use of the integrated method in some (or all) phases.  

 

To outline the former approach, we integrate Eq (1) and (3) from the loop apex down 

to an arbitrary position, assumed to be approximately the loop length (Papers 1 and 2), 

and denoted by subscript “0”: 
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Here “overbar” denotes an averaged quantity, LTnRc )(2  is the total radiative 

loss between the apex and the level “0”, and the enthalpy and heat fluxes are 

evaluated at level “0”. Symmetry is assumed around the loop apex. [We have not 

made use of Eq (2) since the pressure is defined as a coronal average. Gravitational 

effects enter when we include the atmosphere below the “0” level.]  Below the level 

“0” is a plasma layer (the TR) that responds to the downward heat or enthalpy flux. 

While Eq (4) and (5) are widely used in 0D modelling, it is the essential treatment of 

this lower layer that distinguishes the models. Finally while these equations are 

written in terms of coronal averages, most workers use apex values as their variables, 

and so apex values will be our primary variables.  

 

3. The Models summarised 

 

We examine the models as originally documented in the literature, unless noted 

otherwise. There are difficulties in comparing heating functions. In some cases this is 

because the model can only accommodate one type (in our view a significant 

drawback), while in others there are restrictions imposed on the temporal form of the 

heating. This means that it is not possible to compare all models on the same problem. 

 

We now summarise the important points of the models, with the extensive details of 

FH90 and AT09 in Appendices A and B. Table 1 summarises the capabilities of the 

models (see caption for full details). The list of criteria is by no means complete, but 

does contain a number of things that are reasonable to require of a 0D model. In many 

cases there are caveats, as noted, concerning whether a model does something 

adequately or not. We return to Table 1 in Section 5.4. 

 

3.1 Klimchuk et al (2008), Cargill et al (2012) 

 

Full details of the “The Enthalpy Based Thermal Evolution of Loops” (EBTEL) 

model can be found in Papers 1 and 2. In EBTEL the region below “0” is the TR that 

is coupled to the corona through the heat and enthalpy fluxes. Integrating Eq (3) from 

the chromosphere to level “0”, we obtain the TR equation:  
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where trR is the radiative loss integrated over the TR, and the TR thickness is much 

less than the corona. Both the heat flux and temperature at the TR lower boundary are 

assumed to be small. Eq (6) says that the incoming heat flux and incoming or 

outgoing enthalpy flux must adjust to account for the TR radiation. We can combine 

Eq (6) with (5) to give a coronal equation:  
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Thermal conduction and enthalpy do not appear in (7) because they involve energy 

redistribution within the corona/TR system as opposed to a net energy loss. The 

coronal density comes from (4) in the form:  
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and the coronal temperature is determined by: 
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The quantities Rtr, T0 and LTF ac /)7/2( 2/7

00  , where Ta is the apex temperature 

of the loop, are defined in terms of coronal averages through three parameters: 

ctr /R = RC1 , aTTC /2   and aTTC /03  . C2 and C3 can be taken as constant, with 

values of 0.9 and 0.6 respectively (Paper 2, Appendix). C1 is, in the absence of 

gravity, 2 for equilibrium, static loops and 0.6 during radiative cooling. In Paper 2 we 

discuss the full implementation of C1 = C1(Ta, L), in particular how it can model 

stratification. The static initial conditions require a background heating function and 

are found by setting the time derivatives zero in Eq (7-9). 

 

3.2 Kuin and Martens (1982). 

 

We do not analyse KM82 in depth, but it merits mention as the first attempt to address 

in a simple fashion the coupling between corona, TR and chromosphere. The domain 

of integration in Eq (5) was extended to the chromosphere.  A lower atmosphere was 

not included, but the exchange of material through the base was treated as:  
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where Ti is defined as an “inflection temperature”, when conduction changes from a 

loss to a gain, calculated for static equilibrium. The right hand side of (10) gives the 

correct direction of the flow for loops that are hotter (upflow) and cooler (downflow) 

than in equilibrium. Comparing (10) with the corresponding EBTEL equation, TR 

radiation is not included explicitly, though it is included implicitly for f < 1 during 

evaporative cooling. For T < Ti, enthalpy cooling of the corona is not considered. 

 

3.3. Kopp and Poletto (1993) 

 

KP93 use equation (5) but with LTF ac /)7/4( 2/7

00   and ib QQQ   includes 

both background (b) and impulsive (i) heating terms. [Note the factor 4/7 in the 

conduction term compared with 2/7 in EBTEL. Since the temperature in the heating 

phase is determined approximately by a balance between conduction and heating, the 

difference in the maximum temperature will be of order 2
2/7 

= 1.22.]  

 

KP93 model the lower atmosphere in a similar generic way to EBTEL. They include 

an evaporative upflow: 

p

tFF
v cc

ev

)0(1 00 





    (11) 

where Fc0(t=0) is the initial heat flux. Eq (11) always gives an upflow when the heat 

flux exceeds its initial value. Contrasting this with the relevant equation in EBTEL, 

(11) fixes the TR radiation at the pre-heating value (Fc0(t=0) ~ Rtr(t=0)).  However, as 

a loop evolves during a heating event, Rtr increases, and eventually exceeds the 

downward heat flux. At this point a downward enthalpy flux is required to power the 

radiation. Eq (11) does not have such a flow and instead KP93 model loop draining by 

including a term   ffd vnnv /1 0 , and set dev vvv   in (5). Here   2/1
2ghv ff  , 

/2Lh   is the height of the apex of a semi-circular loop and 0n is the average initial 

loop density. This draining leads to problems with the density, as we shall see.  

 

KP93 define an initial state: 00 ccb FRLQ  , and rewrite Eq (5) in the simple form:  
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We have coded up the KP93 method, compared this with Figures 1 - 3 of their paper, 

and are satisfied with the agreement.  

 

3.4 Cargill (1994) 

 

We now turn to the second class of models, namely those that split up the coronal 

evolution into separate phases. C94 assumes that the heating phase is instantaneous 

(faster than the initial cooling time) and the cooling takes place in two phases. First, 

the loop cools by conductive evaporation at constant pressure according to Antiochos 

and Sturrock (1978) and, when the conductive and radiative cooling times are equal, 

the cooling changes to radiative domination where temperature and density satisfy the 

scaling T ~ n
2
 (e.g. Serio et al., 1991; Cargill et al., 1995): 

Rc

c tT

T

n

tnt
TtT 

















  ,
)(

)(
  ,1)( 0

0

7/2

0

0     (13) 

Rc

R T

tT

n

tntt
TtT 













 












  ,
)()(

  ,
)(

2

1

2

3
1)(

00

)2/1/(1

*

*
*   (14) 

where T and n are apex values, c and R the instantaneous conductive and radiative 

cooling times, T0 and n0 the temperature and density on cessation of the heating, given 

by Eq (14) – (16) of Cargill (1994), c0 the conductive cooling time at the end of the 

heating, t* the time when c = R and R* the radiative cooling time at t = t*.  

 

Eq (13) can be derived from (5) by assuming that the coronal pressure remains 

constant, there is no coronal heating or radiation and the downward heat flux leads 

only to an upward enthalpy flux. Eq (14) is a semi-empirical result that has not as yet 

been derived from the basic equations.  

 

3.5 Fisher and Hawley (1990) 

 

FH90 introduced some ideas used by later authors, and is discussed fully in Appendix 

A. They work in terms of the column density:  ndsN , though recovering the 
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average and apex density is straightforward. The loop evolution is split into three 

parts: an initial evaporative phase where heating roughly balances conduction, a phase 

close to equilibrium, and then a strongly condensing (radiative) phase. It is possible to 

go from the first to the third phase, with conduction-driven evaporation in the absence 

of heating not being modelled. FH90 assume that during all stages the column density 

and pressure are related by a relationship: pN ~  or, on writing N in terms of an 

average density n and loop length L as nLN ~ , pn ~ . They calculate the index , 

as described in Appendix A, and then solve the equations of mass and energy 

conservation. For comparison with EBTEL, we replace the radiative loss function in 

FH90 by 3/21810  95.1)(  TT  

 

3.6 Aschwanden and Tsiklauri (2009) 

 

AT09 present a model that relies largely (though not entirely) on empirical 

specifications of the temperature and density, and is described fully in Appendix B. A 

temporal Gaussian heating pulse is used. They split the evolution into three parts: the 

first up to the time of maximum temperature, t = tm, during which heating and 

conduction balance, the next to the time of maximum density at t = tp and a final 

cooling stage that has some similarity to the familiar T ~ n
2
 cooling. The second stage 

is less clear and relies largely on simulation results presented in Tsiklauri et al (2004: 

hereafter T04), with prescribed ratios of the maximum temperature to the temperature 

at maximum density and vice-versa, as well as the delay between maximum 

temperature and maximum density. 

 

4. Comparison of Models 

 

4.1 Comparison basis 

 

As noted earlier, 0D models can describe a loop using quantities evaluated at the loop 

apex, or by averages over either the entire loop or just the coronal portion. KP93 use 

both apex and average quantities in their formalism, but assume them to be 

approximately equal. C94 used apex values only. EBTEL has simple relations 

between apex and average values (Paper 2), with the latter being the primary 
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variables. FH90 treat the apex temperature as a primary variable, and define relations 

between the total loop column density and the apex density. Since the pressure is 

spatially constant, one can then work out an average density and temperature. AT09 

take apex values as their primary variable, but average temperatures can be calculated.  

 

The relationship between average and apex values is not the same in each model due 

to different averaging domains. For example, EBTEL has aTT 9.0 . FH90 have 

aa TTT 77.0or  74.0 depending on the phase of evolution. AT09 have aTT 86.0  for 

uniform heating. Both FH90 and AT09 are averages over the whole loop, so that 

when the integration is over just the coronal portion, aTT / will increase. If the TR is 

10 (20)% of the length, FH90 get aTT  )85.0( 8.0  and AT09 aTT  )93.0( 9.0 . To 

avoid concerns about spatial averaging, we compare EBTEL and Hydrad with the 

primary variables of the other models, which are usually apex quantities. The 

comparison between EBTEL and the 1D Hydrad code (Bradshaw and Mason, 2003, 

Bradshaw and Cargill, 2006) has been discussed extensively in paper 2. However, we 

include Hydrad runs in several of the cases discussed below. 

 

4.2 Loop cooling model: C94 

 

As the first example, we consider the cooling of a hot loop. FH90 and AT09 are 

excluded because the former cannot model evaporative cooling and the latter requires 

a heating function. The loop has a half-length of 25 Mm and initial apex temperature 

and density of 10 MK and 10
9
 cm

-3
 respectively. In all the models discussed, the 

initial conditions of an equilibrium loop are suspended to accommodate these values.  

 

Figure 1 shows the apex temperature, density and pressure for C94, KP93, EBTEL 

and Hydrad (dotted, dashed, solid and thick solid lines respectively), and the 

instantaneous conductive and radiative cooling times for the first three. The Hydrad 

temperature and pressure fall somewhat faster than EBTEL, while the densities 

compare well, in line with Paper 2. Looking at KP93, the density and pressure are 

much lower after 200 secs, the peak density is too small and occurs too soon. The 

cooling times show that the transition from conductive to radiative cooling in EBTEL 

corresponds to the time of maximum density, while in KP93 it occurs much later. 
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We have modified the two models to see when they agree, and conclude that the loop 

draining model in KP93 is the major cause of the discrepancy. In early cooling, the 

draining offsets conduction-driven evaporation, and later on inhibits draining as the 

loop density approaches its initial value. Plasma draining from a hot loop is not due to 

free-fall motion, but to a downward enthalpy flux required to power the TR radiation 

during radiative cooling (Bradshaw and Cargill, 2010a,b) and is driven by a mild 

deviation from hydrostatic equilibrium. Free-fall motions are important in the final 

loop emptying at low temperatures. Setting vd = 0 in KP93 leads to better agreement 

with EBTEL. The KP93 density is then larger in the conductive phase, and when we 

change the value of the conduction coefficient in KP93 to 2/7, and set  C1 << 1 in 

EBTEL, the two agree. So the neglect of TR radiation in KP93 is also significant.  

 

Comparing EBTEL with C94, there is a discrepancy in the timing and value of the 

maximum density but in both models this occurs when the conductive and radiative 

cooling times are equal. We find that turning the radiation off at all times in EBTEL 

gives better agreement with C94 during the conductive cooling phase, though EBTEL 

has higher temperatures and lower densities due to slightly different conduction 

coefficients. Turning on only coronal radiation in EBTEL (C1 << 1), reduces the 

coronal density, with the transition to radiative cooling at around 1600 secs, closer to 

C94. So it is neither the assumption of separate conduction and (coronal) radiation 

phases, nor the value of the conduction coefficients, that leads to C94 having a 

different density. Rather inclusion of the transition region radiation is essential, even 

at a time when conduction is the more significant coronal loss. In C94 the downward 

heat flux only drives an upward enthalpy flux, while in EBTEL some of this flux is 

radiated away as seen in the pressure plot where EBTEL shows energy loss at all 

times. However, the loop cooling time, defined as the time taken to cool to 1 MK, is 

similar. Indeed C94 suggested that neglecting radiation during the conduction phase 

and vice-versa is self-compensating, at least when calculating total cooling times. 

 

4.3 Nanoflares: square & triangular heating pulse: FH90, KP93 

 

We next compare FH90, KP93 and EBTEL for nanoflare heating using square and 

triangular heating pulses. The former was used in FH90 and KP93, and the latter in 
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EBTEL. Figure 2 shows three cases for square pulses: from top to bottom, case (a) a 

short (200 sec) and case (b) a long (500 sec) heating pulse in a loop with half-length 

25 Mm, and case (c) a long pulse (500 sec) in a loop with L = 75 Mm. The upper and 

lower panels of Figure 3 shows two cases for a triangular pulse with the same 

parameters as Figure 2, examples (a) and (c). The pre-heating apex temperature and 

density are 9 10
5
 K and 1.4 10

8
 cm

-3
. The heating is turned on abruptly after 100 secs 

and the maximum heating amplitude for the square (triangular) pulse is 5 10
-3

 (10
-2

) 

ergs cm
-3

 s
-1

, so that the total energy injected is the same for both profiles. The three 

columns in Figures 2 and 3 show the apex temperature, density and pressure as a 

function of time with solid (EBTEL), dotted (KP93), dashed (FH90) and thick solid 

lines (Hydrad). The thick dotted lines are described below. AT09 can use only a 

Gaussian pulse. Hydrad is only shown in the top panels. 

 

Looking first at the KP93 results, the temperature in the initial heating phase agrees 

well with EBTEL since the physics in both models is similar. However, the density 

and pressure from KP93 do not compare favourably. The reasons are described in 

Section 4.2, with the gravitational draining leading to premature termination of the 

evaporative phase. [We have run KP93 without the draining term and find the density 

at 800 secs slightly larger than that given by EBTEL.] Figure 3 shows that the 

problems with KP93 persist for a triangular heating pulse. 

 

We next compare FH90 and EBTEL. The thick dotted lines in the density and 

pressure plots are EBTEL results with gravity turned off and a single power law loss 

function. The temperature with these modifications is not shown since the full EBTEL 

results differ little from the modified ones. The relevant comparison of FH90 is with 

these modified results. The most important thing to note is the behaviour of the 

density upon termination of the heating. At that time the density in FH90 begins to 

fall because evaporation in the absence of heating is not included. On the other hand 

EBTEL shows the expected conduction-driven evaporation persisting after the 

termination of heating. This leads to an under-estimation of density in FH90, and an 

earlier density maximum. Inclusion of gravity in EBTEL shows better agreement with 

FH90, but this must be regarded as serendipitous. The EBTEL and FH90 temperature 

maxima differ by a similar magnitude to that between EBTEL and Hydrad, but there 

are differences in the decay phase.  
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Triangular and other profiled heating pulses such as Gaussians also reveal limitations 

with FH90, as discussed in their Appendix A. The key assumption behind their 

approach is that the heating function changes “slowly”: that is, the timescale is slower 

than the local conductive cooling time. We find that heating functions which violate 

this condition give unacceptable answers, including values of the key parameter  >> 

1 and < 0, the former destroying the solution entirely. Thus the method cannot then be 

used. This is seen in Figure 3, and is a problem even for quite long (500 s) triangular 

pulses. The spiky behaviour of the density around the time of maximum heating 

corresponds to extreme values of . The FH90 model thus works only for flat heating 

profiles, such as the square wave discussed in their paper, and in Figure 2 here. 

 

4.4 Nanoflares: Gaussian pulse 

 

To compare with AT09, we need to use a Gaussian temporal heating profile: 

  22

0 2/exp HmttQQ  . We do not show KP93 here since its limitations are 

discussed above. FH90 is also not shown because the pulses considered change too 

rapidly. Deciding a basis for assessing the AT09 model is non-trivial. They discuss a 

range of values of the parameter L/sH, where sH is the scale height of the heating, and 

positive (negative) values correspond footpoint (apex) heating. There is an abrupt 

change in the solution when sH changes sign, even as L/|sH| 0 from both directions. 

We concentrate on uniform heating and show how the different approximations used 

for footpoint and apex heating in AT09 apply in the limit of large |sH|. 

 

Fig 4 shows a case with L = 25 Mm and a Gaussian pulse with H = 40 sec, tm = 200 

sec and a peak amplitude of 10
-2

 ergs cm
-3

 s
-1

. The top row shows the apex 

temperature and density, and the lower one the pressure, and radiative and conductive 

cooling times for roughly uniform heating. The apex heating (AH) formalism is 

dotted, the footpoint heating (FH) one dashed, EBTEL and Hydrad are the solid and 

thick lines respectively, and the AT09 solutions are terminated when they return to the 

pre-heating state. The AH model gives a higher temperature, density and pressure 

than the FH one, and has slightly faster cooling. The average AH temperature agrees 

well with EBTEL up to its maximum value. This can be attributed to the “4/3” factor 
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introduced by AT09 to ensure that AH agreed with their hydro simulations. The FH 

model average temperature is lower than EBTEL by the factor of 4/3.  

 

Since the same total energy is going into AH and FH cases, the pressure (lower left) 

shows a surprising difference between the two models. This requires an understanding 

of the density behaviour (see below), but implies that the footpoint model has a larger 

(implied) radiative loss from the loop, especially in the rise phase, than the apex one. 

This large loss occurs neither in EBTEL nor Hydrad.  

 

The principal feature of these results is the behaviour of the AT09 density. Both AH 

and FH models have the peak density occur much closer to the time of maximum 

temperature than EBTEL and Hydrad (50 secs rather than several hundred secs), and 

the maximum densities are much smaller. The short delay between the temperature 

and density maxima is due to the assumption in AT09 that the delay is proportional to 

H. In fact, a reasonable estimate for the delay is that it is proportional to the time 

taken for material to evaporate due to a downward heat flux from the chromosphere to 

the corona ~ L/V, where V is some fraction of the sound speed based on the coronal 

temperature: for this example, a few hundred secs.  

 

The consequences of this assumption can be seen in the lower right panel. The peak 

density should occur at the time when conductive and radiative losses are roughly 

equal (more precisely, when the TR can radiate away all the downward heat flux: this 

leads to a factor 2 difference from using purely coronal radiation). The lower right 

panel show the conductive and radiative cooling times respectively for the two AT09 

models and EBTEL. [Note the difference in time ranges compared to the other plots.] 

To make the comparison with AT09, we use the definitions of cooling times from 

their paper. The cooling times are equal in both AT09 and EBTEL at around 850 secs. 

At 240 secs, when AT09 impose their maximum density, their conduction cooling 

time is shorter than the radiative one by a factor 10. Thus, in this case, the peak 

density is enforced at a time when conduction-driven evaporation should still be 

dominant and the density should still be rising. The temperature is also constrained at 

this time to be half its maximum, which is faster cooling than EBTEL/Hydrad find. 

The maximum density itself is calculated from a static loop scaling law (i.e. n ~ T
2
) 
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under the assumption that the temperature at maximum density is half the maximum 

temperature. So for this example, the AT09 model seems inappropriate. 

 

We next look at a pulse of longer duration for the AT09 apex heating: the footpoint 

heating is not considered further. Figure 5 shows a longer pulse (H = 300 secs) 

peaking at 2000 secs with the same amplitude heating. Several changes are evident. 

The temperatures show good agreement at all times. The delay between the AT09 and 

EBTEL density peaks is reduced to almost zero. However, the discrepancy between 

the density maxima is similar and the amount of the energy input that appears as 

thermal energy diminishes. But, for these parameters, AT09 does better. 

 

We have looked at H in the range 40 – 800 secs, peaking at tm = 3000 secs, for short 

(25 Mm) loops. The results are summarised in Figures 6, and similar results are found 

for nanoflares in long loops. Stars and circles are EBTEL and AT09 results with apex 

heating. The three diamonds are Hydrad runs. The six panels show the time of the 

maximum temperature and density after 3000 secs (tm3 and tp3), the maximum 

temperature and density, and the ratios Tmax/T(nmax), nmax/n(Tmax). AT09 predict that tm 

is constant, tp –tm proportional to H, Tmax/T(nmax)=2 and nmax/n(Tmax)=2, and these are 

what indeed are found for AT09, though the two ratios are slightly lower than 2 due to 

the presence of background pre-heating plasma as discussed in Appendix B.  

 

The magnitude and timing of the temperature maxima show some differences 

between EBTEL, Hydrad and AT09, but we do not regard these as especially 

significant. The delay of tm in EBTEL can be attributed to the fact that conduction and 

heating do not quite balance in the rise phase (dp/dt needs to be included). The 

difference between the EBTEL and Hydrad maxima is familiar from Paper 2, and 

reflects on the approximate nature of the heat flux in EBTEL.  

 

Turning to the density, the EBTEL value of tp3 rises slowly from 600 to 800 secs as H 

increases, whereas with AT09 tp3 increases linearly with H. The Hydrad values of tp3 

agree well with the EBTEL ones. We argued earlier that the delay of the density 

maximum should be of order L/V, with V some fraction of Cs, and should be largely 

independent of H. For peak temperatures of 5 10
6
, this is of order a few hundred secs.  
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It is also clear that the assumptions concerning the temperature and density at their 

respective maxima in AT09 are not correct. EBTEL and Hydrad show that, while it is 

reasonable to assume that the pressures at tp and tm are equal, the factor “2” relating 

temperature and density at tp and tm is in general incorrect. The consequences are as 

follows. For small H the transition to draining occurs when the loop should still be 

filling up due to conduction-driven evaporation, so giving a low density.  For longer 

pulses, the transition takes place too late.   

 

Thus, for AT09, we draw the following conclusions: (a) the Gaussian formalism for 

the density at all times and the temperature after its maximum is inappropriate, (b) the 

relation between the density maximum and its value at maximum temperature is in 

general invalid and (c) the transition to loop draining is applied at an incorrect time. 

The reason for this behaviour is the assumed Gaussian density in AT09, and the 

associated assumptions about the relative timing of the maximum temperature and 

density. These may be valid over a limited domain of pulse lengths, but in general 

should not be used. For all pulse lengths, the densities are too small.  

 

4.5 Flares 

 

Finally, we looked at these models briefly with flare parameters. FH90 continue to do 

well for square wave pulses, but have difficulties for profiled ones. KP93 have the 

same problem with incorrect loop draining. Similar conclusions also hold for AT09. 

Figure 7 shows the same quantities as Figure 6, except the maximum energy 

deposited is 2 ergs cm
-3

 s
-1

. The conclusions are as in Section 4.4. 

 

5. Discussion 

 

This paper has compared several 0D hydro models for the evolution of coronal loops 

subjected to impulsive heating. We have outlined the physics needed to model this 

with reasonable accuracy, and demonstrated, using a number of these models, what 

happens when this essential physics is omitted. The following discussion can be 

grouped conveniently around four topics. 
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5.1 Lessons for developing a 0D model 

 

The two main lessons from this study are: 

 

(i) 0D models are best developed from approximate solution of the corresponding 1D 

equations, making use of fundamental conservation laws. This can lead to solutions 

that are either continuous or piecewise continuous in time. Empirical models that do 

not pay attention to these conservation laws (e.g. AT09) are unlikely to succeed. 

 

(ii) Inclusion of TR energetics and dynamics is essential for handling all phases of a 

coronal heating and cooling cycle. TR radiation governs the mass flow to and from 

the corona and hence how a loop fills on being heated, and how it cools once the 

heating is turned off. 

 

A third more minor point worth noting is that some models lead to the “creation” of 

energy, especially during the initial heating phase. This arises from the neglect of the 

dp/dt term in the energy equation, so that heating must balance conduction at all 

times. This appears to be a minor problem in FH90. In AT09 it appears to be more 

significant for short pulses, though the extent is hard to pin down. We do not believe 

that this influences the subsequent evolution of the loop in a major way. 

 

5.2 Comparison of archival 0D models with 1D models 

 

The older 0D models claimed good agreement when compared with 1D hydro 

simulations: KP93 and FH90 with Pallavicini et al (1983: P83) and AT09 with T04. 

We have looked at these comparisons to assess why subsequent disagreement occurs. 

 

(i) KP93 compared the pressure and temperature with a square wave heating 

simulation of P83 (Figure 1 of KP93 and Figure 7 of P83). EBTEL agrees quite well 

with both up to the peak temperature, but then KP93 and P83 see a much faster 

decrease in T and p. The P83 density (not shown by KP93) has better agreement with 

EBTEL, but the maximum still appears to be a factor two smaller.  
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(ii) FH90 likewise compared their results with a square wave simulation from P83, 

but for a more intense flare (Figures 5 and 6 of FH90 and Figures 9 and 12 of P83). 

P83 show faster cooling than FH90, but the agreement between FH90 and P83 is 

better than between KP93 and P83. However, FH90 did not show a comparison of the 

density, and Fig 9 of P83 clearly shows a density increase after the heating is 

terminated, something ruled out in FH90.  

 

(iii) AT09 claim agreement with the 1D hydro simulations of T04, but we note that 

the 1D hydro simulations were used extensively to parameterise the AT09 model. The 

agreement between peak temperatures in AT09, EBTEL and Hydrad is positive. 

However, it is disturbing that AT09 (and by implication T04) have such persistent and 

large density discrepancies with EBTEL and Hydrad.  

 

We believe a major reason for low densities in some 1D hydro models is numerical 

under-resolution of the TR. Using the Hydrad code we have recently demonstrated 

(Bradshaw and Cargill, 2012) that such under-resolution in an impulsively heated 

loop has little effect on the peak temperature, while changing the peak density by 

factors of 2 to 8, depending on the lack of resolution. Also, an adaptive mesh is 

necessary since the TR moves in response to heating so that even innovative (but 

fixed) grids such as in P83 will have difficulties. A further problem with T04 appears 

to be the rather shallow chromosphere attached to the base of the loops. We believe 

that the AT09 model is parameterised on the basis of incorrect 1D modelling. 

 

5.3 What 0D models don’t do and does it matter? 

 

(i) Change of loop length in response to heating. The result of impulsive heating is to 

push the top of the chromosphere downwards. This leads effectively to a longer loop 

whose magnitude has been estimated as   )/1ln( 0pEdz   : Klimchuk, (2006) 

where is the chromospheric scale height, p0 the initial pressure at the top of the 

chromosphere and E is the total energy deposited in the loop. For a chromosphere 

with a temperature of 30 kK, as used in Hydrad, = 1.8 10
8
 cm. For the cases 

discussed in Figures 2 and 3, dz/ ~ 3, or dz/L ~ 0.2L (0.067L) at the end of the 

heating phase for short (long) loops. These values are larger for flaring cases. This 
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should lead to 0D models over-estimating the coronal density since pushing the 

chromosphere downwards requires that the evaporated plasma fit into a larger 

volume. However, the time of maximum density is not the same as the time of 

maximum pressure (see Figures), with the pressure decreasing by 20 – 30% in that 

interval so that dz/L will be somewhat smaller. All of this suggests that the density 

from 0D models will be 10 – 20% above corresponding 1D ones. However, we have 

included this modification to the length in EBTEL and find that while the peak 

density does decrease, it is by much less than predicted above, under 10%. This is 

because, as the length increases, other effects also come into play.  

 

(ii) Neglect of high-speed flows. All 0D models neglect terms proportional to V
2
 in 

the momentum equation. EBTEL defines the velocity as being evaluated at the base of 

the corona. We have calculated a posteriori the Mach number there. For nanoflares 

neglect of these terms is justified. For larger energy releases, the neglected terms are 

potentially important during the rise phase of the flare. Immediately after the heating 

is turned on, when the temperature is still small and sound speed low, the Mach 

numbers are large but as the temperature rises rapidly, the sound speed increases and 

the Mach number falls back. By the time maximum temperature and subsequently 

maximum density are reached, the neglected terms are small.  

 

In fact, these a posteriori velocity calculations will not reflect reality. We know from 

Hydrad that up to nearly the time of maximum temperature, almost all the energy 

deposited in the loop is transferred to thermal energy. So any “missing” kinetic energy 

must be at the expense of that thermal energy which suggests that the upflows are in 

reality limited to some fraction of the sound speed: an analogous argument was 

invoked to limit the magnitude of evaporative upflows in flares in response to thick 

target electron beam heating to of order the sound speed (Fisher et al., 1984; Fisher, 

1987). The consequences are that the loop will, during this first phase, fill slightly 

more slowly than calculated by EBTEL. However, the major part of the density 

increase occurs close to and after the temperature maximum, during a phase of 

subsonic evaporation, so the delay should not be large. 

 

5.4 Final remarks on 0D models 
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To conclude this series of papers, we return to Table 1. It can be seen over the last 2 

decades how a workable 0D model was developed. FH90 and KP93 identified 

methods to handle evaporation in response to thermal conduction, KP93 being the 

more pleasing since evaporation in the absence of heating was included. FH90 and 

C94 realised how to incorporate radiative cooling in a way that gave rise to over-

dense loops. Papers 1 and 2 showed how the TR can respond correctly to conductive 

and enthalpy fluxes while incorporating the other important effects. It is essential to 

include the correct TR physics in 0D models. Despite being thin, its radiative loss in 

equilibrium loops is twice that of the corona, so that the TR tail wags the coronal dog. 

 

What future developments can be expected from such models? The work described in 

Papers 1 and 2 does rely on a set of constants (or parameters) whose values must be 

determined by other means such as simulations or equilibrium models. Improvements 

certainly are possible there though care must be taken that such parameterisations 

make good physical sense: this paper has demonstrated what can happen when this 

does not happen. We noted in Paper 2 that systematic differences of 10 – 20% could 

occur between EBTEL and a 1D benchmark. Is this something to worry about? 

Perhaps not, given the accuracy of current observations, but also because removing 

such discrepancies will involve developing more complex 0D models with harder-to-

understand parameterisations. And the whole point of 0D models is that they be 

simple, subject to certain basic principles of how the corona works, as discussed in 

this series of papers. 
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Appendix A:  Fisher and Hawley Model 

 

Rather than working in terms of a density, Fisher and Hawley (1990: FH90) use the 

column depth 
s

dzznsN
0

)()(  as a variable, and define the total mass per unit area at 

any time as 
L

t dzznN
0

)( . We can recover the density by writing LtNCtn tN /)()(   

where CN is a constant defined by Eq (12) of FH90. They write Eq (4) in the form: 

 RQ
dt

pd


1

1


        (A1) 

assuming symmetry at the apex and vanishing heat and enthalpy flux at the base. Here 

Q and R are averages per unit volume. 

 

They assume that loop evolution can be split into three phases depending on the ratio 

of the heating to radiation terms in (A1). These are: (i) strong evaporation when 

2/QR  , (ii) strong condensation when QR 2 and (iii) quasi-equilibrium at other 

times. The factors ½ and 2 in (i) and (ii) are arbitrary, but in our experience are 

sensible. In a heating-cooling cycle the sequence should be (i) – (iii) – (ii). The 

drawback in this approach is that it does not model evaporative cooling in the absence 

of heating (see also Paper 1), the model defaulting to phase (ii) automatically.  

 

FH90 organise these phases around a relationship between Nt and p of the form: 

dt

dp

pdt

dN

N

t

t

11
 , or  pN t or, in terms of n,  pn    (A2) 

Using the ideal gas law, we see that this implies simple scalings between n and T of 

the form  /)1(~ nT . = 2/3 gives the static loop scaling law, = 1/3 the radiative 

cooling scaling law T ~ n
2
 and >> 1 gives constant-pressure evaporative cooling. 

FH90 use only the first two of these. 

 

To evaluate the radiative losses, for a given column density and temperature FH90 use 

the equivalent losses from an equilibrium loop including the TR. We note that 

radiative losses are sometimes weak in phase (i) but do matter in phase (ii), and also 
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believe that equilibrium losses overestimate the real losses in phase (ii) (Paper 2, 

Bradshaw and Cargill, 2010b). FH90 rewrite Eq (A1) using (A2) to obtain: 

 


t

tt KNQ
p

N

dt

dN





1

1
     (A3) 

where K and  are defined in FH90, Eq (13). One can substitute nL for N in (A3) if 

desired. We do not reproduce the analysis of FH90 for phases (ii) and (iii) because the 

outcome is not at variance with the work of others. In phase (iii) they set = 2/3, and 

solve (A3) with (A2) subject to initial conditions obtained at the transition from phase 

(i). For phase (ii) the authors argue that < 0.46 for  = -2/3, the power-law index of 

the radiative loss function. This gives T-n scalings consistent with our present 

knowledge of this phase in the absence of stratification (Bradshaw and Cargill, 

2010a,b). We set since this corresponds to the “default” radiative scaling 

used in Paper 2. 

 

In phase (i) FH90 derive a conductive cooling model with similarities to that of the 

Antiochos and Sturrock (1978), with a balance between downward conduction and 

upward enthalpy fluxes. Integrating the energy equation twice over the loop and 

applying boundary conditions gives:  

2

2/7

01

L

T

pdt

dN

N

A
      (A4) 

where  = 0.2913 and TA is the apex temperature. [The factor  is almost identical to 

the factor 2/7 = 0.2857 that arises from a simple approximation to the heat flux.] For 

constant pressure along the loop, the equation of state gives:  

  7/2

00 /1)(


 cAA tTtT      (A5) 

where  2/7

00

2

0 7/2 Ac TpL   is the conductive cooling time at t = 0. This can be 

compared with the solution of Antiochos and Sturrock (see Cargill, 1994, Eq 8 and 9) 

which has  2/7

00

2

0 2/)6.1/(5 Ac TLp   . The numerical coefficients are the same to 

1%. Enforcement of the boundary conditions then leads to an expression for the 

pressure as a function of TA and Nt: LNkTp tA /22 3/2   where  = 0.4656. This in 

turn determines the apex density in terms of Nt as LNLNn ttA /74.0/2 3/2   , in 

contrast with LNn tA /78.0 during phase (iii): FH90, Eq (12). 
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This solution, which describes evaporative, conduction-driven cooling in the absence 

of heating (a phase not actually modelled by FH90), is then modified to account for 

heating, and to permit use of the  formalism. FH90 determine TA by balancing 

conduction and heating:  

7/2

0

2)1(









 




 QL
TA      (A6) 

and then derive an expression for  in this phase:  











dt

Qd
c

)ln(
1       (A7) 

where c is just the previous conductive cooling time defined now for all times. The 

solution is obtained by solving (A2) and (A7) for Nt and then calculating TA and p as 

described above. We have been able to reproduce successfully the results shown in 

Figure 5 of FH90 which involves a square wave heating function, so that  = 1. For 

their Figure 6, we find a change from evaporative cooling to quasi-equilibrium at 250 

secs, which is different from FH90. Their results can be reproduced by changing the 

condition for strong evaporation to QR 62.0 . We do not regard this discrepancy as 

especially significant. 

 



 

24 

 

Appendix B. Aschwanden and Tsiklauri (AT09) model 

 

Although AT09 has similar aspects to parts of other models, in general it approaches 

the problem differently, relying on empirical specifications based on the numerical 

work of T04. AT09 use a Gaussian heating function of the form 

  22

0 2/exp HmttQQ   and can include a spatial dependence of the heating 

function, obtained by multiplying Q by exp(-s/sH) to give apex or footpoint heating 

depending on the sign of sH and the location of the origin. We neglect the spatial 

structure of the heating function but note that parts of the AT09 model differ by 

numerical factors depending on whether sH  is positive or negative as Hs .  

 

AT09 consider three phases: (i) heating up to the temperature maximum at time tm, 

(ii) from then until the density maximum at time tp and (iii) the final cooling. In phase 

(i), AT09 assume a balance between heating and conduction. We are not concerned 

here with the spatial temperature structure, and the apex temperature is given by: 

7/2

2

2

0

0

2

2

)(
exp

4

7
)(



























 


H

m

a

ttQL
tT


   (B1) 

For apex heating, this is multiplied by a factor 4/3 to agree with simulations of T04. 

 

Calculation of the density is empirical, relying on the T04 simulation results. AT09 

set )(22)( mmpp ttnnttnn  , assume p(tp) = p(tm), so mpp TttTT 5.0)(  . 

This leads in turn to )2ln(7Hmp tt  . The density for t <  tp is given by: 













 


22

)(
exp)(

evap

p

pa

tt
ntn


 where 

)2ln(2

)( mp

evap

tt 
    (B2) 

To calculate np, AT09 use a modified static loop scaling law, but include various 

factors to obtain agreement with T04. For uniform heating, we have 

  qtTLttp pp

3
1400/)()(  , )/exp(1 fillHq  , and ))((/ psfill tTTcL  . 

For apex heating the expression for p is multiplied by 0.7 and for footpoint heating 

other numerical factors are included. Calculation of T and n at maximum density from 

such a scaling law is reasonable since it is equivalent to conductive and radiative 

cooling being approximately equal. The role of the factor q is unclear. Clearly it fails 
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in the limit of small pulses when significant density enhancements are obtained and 

the peak density corresponds to a time of equal conductive and radiative losses. Also, 

this formalism for np ignores the physical nature of the interaction of corona, TR and 

chromosphere, except through some parameters to obtain agreement with T04. The 

consequences of this are shown in Section 4.4. 

 

For times after tp, AT09 calculate the cooling using the parametric fit: 

2
)(

1)( 






 


coolcool

p

p
n

tt
TtT


where 

rccool 

111
    (B3) 

and ncool is chosen as 4 from the apex simulations of T04. The density in this phase 

follows the T ~ n
2
 scaling, valid only for purely radiative cooling. The inclusion of 

conduction will tend to increase the coefficient in the T-n power law. Doubtless the 

various parameterizations take this into account. 

 

We have used the original SolarSoft version of the AT09 model, and calibrated our 

version of it against Figure 7 in AT09. Noting that L in this Figure is the total loop 

length, we need to include a background heating of roughly 5 10
-4

 ergs cm
-3

 s
-1

 to 

recover their results. Since the initial (pre-flare) temperature and density do not arise 

in AT09, it is of interest how this included. In the SolarSoft version of AT09 used to 

obtain their results: 

))(/1(  )),(/1( ** pBBmBB ttnnnnnttTTTTT    (B4) 

Here “*” denotes the value plotted (and tabulated) in AT09, “B” the background 

quantity and un-subscripted the value calculated from the AT09 model. For a large 

energy release this approximation makes little difference. For smaller heating events, 

one can question whether a linear superposition is optimal.  
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Table 1 

Model Pre-

event 

state 

T-

rise 

Evap Radn Gravity Heating (t) Heating (s) Energy 

Conserve 

FH90 Y Y
2 

N Y N Restricted
8 

N N
 

KP93 Y Y Y N N
6 

General N Y 

C94 Y N
3 

Y
3 

Y N Instantaneous N Y 

EBTEL Y Y Y Y Y General N Y 

AT09 Y
1 

Y
2 

Y
4 

Y
5 

Y
7 

Gaussian 

only 

Y 

Exponential 

N 

 

Table 1. The successes of the various models. The columns show: (1) The model. (2) 

Pre-event state: is a background T and n prior to heating included? (3) T-rise: is the 

initial heating up to maximum temperature included? (4) Evaporation: does the loop 

density increase in response to a heat flux after maximum temperature and in the 

absence of heating? (5) Radiation: is the radiative cooling phase modelled correctly? 

(6) Gravity: is stratification included? (7/8) Heating(t,s): any possible temporal and 

spatial profile of heating function. (9) Energy conserve: Is energy conservation 

guaranteed? “Y” means success, “N” means it is not guaranteed to handle this aspect 

properly (Section 5.1). The notes below discuss caveats to the conclusions: 

1. Not discussed in Paper. Included in original SolarSoft code and is required to 

reproduce results in AT09. 

2. Neglects dp/dt term. Instantaneous balance between conduction and heating. 

Leads to possible violation of energy conservation in this phase 

3. Instantaneous rise to maximum temperature. 

4. Density does increase, but not modelled correctly. 

5. Transition to radiative cooling occurs at wrong time. 

6. Only included in plasma draining model 

7. Maximum density calculation only. Footpoint heating only. 

8. Needs to be very slowly varying. 
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Figure 1. Loop cooling showing the models of C94 (dots), KP93 (dashed), EBTEL 

(solid) and Hydrad (thick solid). The initial temperature and density are 10
7 

K and 10
9
 

cm
-3

 and the loop half-length 25 Mm. The four panels show apex temperature and 

density (top), pressure (bottom left) and conductive and radiative cooling times 

(bottom right). The conductive (radiative) cooling time is small (large) near t = 0.  
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Figure 2 Nanoflare energy release with a square heating pulse. The three columns 

show apex temperature, density and pressure as a function of time. The three rows 

show, from top to bottom, a short (200 s) and long (500 s) pulse in a loop with half-

length 25 Mm and a long (500 s) pulse in loop with half-length 75 Mm. The 

maximum heating amplitude is 5 10
-3

 ergs cm
-3

 s
-1

. The line coding is solid (EBTEL), 

dotted (KP93), dashed (FH90), thick solid (Hydrad: upper three panels only), thick 

dotted EBTEL with no gravity and a single power law loss function. 
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Figure 3 As Figure 2 except a triangular heating pulse is used. The two rows are a 

short (200 s) and long (500s) pulse in loops with half-lengths of 25 and 75 Mm. The 

maximum heating amplitude is 10
-2

 ergs cm
-3

 s
-1

. 
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Figure 4. Results for a Gaussian heating pulse of width 40 sec, peaking at 200 secs. 

The dashed (dotted) curve is from AT09 footpoint (apex) heating formalism, EBTEL 

is the solid line and Hydrad the thick one. The loop has a half-length of 25 Mm and a 

heating pulse with maximum amplitude 10
-2

 ergs cm
-3

 s
-1

.  

 

Figure 5. As Figure 5, except pulse has width 300 sec and peaks at 2000 secs.  
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Figure 6. Summary of Gaussian heating for a loop with half-length 25 Mm. The 

horizontal axis shows the pulse width (H). The panels show: the time of maximum 

temperature and density after 3000 secs, tm3 and tp3 (top row), the maximum 

temperature and density (middle row), and the ratios Tmax/T(nmax) and nmax/n(Tmax) 

(lower row). Stars denote EBTEL results, circles AT09 with the apex heating model 

adapted for uniform heating, and the three diamonds are Hydrad runs.  

 

Figure 7. As Figure 6, except for a flare case with a maximum energy deposition of 2 

ergs cm
-3

 s
-1

.  


