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Photocatalytic oxidation (PCO) is a candidate process technology for use in high volume-

tric flow rate trace contaminant control applications in sealed environments. The targeted 

application for PCO as applied to crewed spacecraft life support system architectures is 

summarized. Technical challenges characteristic of PCO are considered. Performance test-

ing of a breadboard PCO reactor design for mineralizing polar organic compounds in a 

spacecraft cabin atmosphere is described. Test results are analyzed and compared to results 

reported in the literature for comparable PCO reactor designs. 

Nomenclature 

C = Celsius 

cm = centimeter 
ft = feet 

hr = hour 

m = meter 

mg = milligram 

ppb = parts per billion by volume 

ppm = parts per million by volume 

I. Introduction 

PACECRAFT and space habitat environmental control and life support (ECLS) systems provide specific atmos-

phere revitalization (AR) functions to ensure high quality air for the crew. These functions include carbon dio-

xide (CO2) removal, oxygen (O2) supply and/or generation, humidity control, fire detection and suppression, and 

trace contaminant control (TCC). While all of these functions are essential, TCC is of particular interest because, 

while generation sources can be minimized, they can never be completely eliminated. 

Two aspects of TCC are of particular concern as space exploration mission objectives extend beyond the Earth-

moon system requiring the ECLS system to recycle critical resources. First is the potential unpredictability of con-

taminant generation rate spikes. Unexpected contamination spikes may result from system or payload leaks and 
spills as well as various housekeeping and personal hygiene activities carried out by the crew. Cabin contamination 

can also result from volatile contaminant intrusion into the cabin during extravehicular activity (EVA). The TCC 

equipment must be capable of broad spectrum control as well as possess sufficient operational margin to accommo-

date transient contamination events. Second, an ECLS system designed to maximize efficient recovery of resources 
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must recycle water. Efficiently recovering and purifying water is central to a successful “closed loop” ECLS system. 

Trace contaminants in the cabin atmosphere inevitably impact water processing system functionality. Reducing the 

trace contaminant load presented to water processing equipment can be accomplished by strategically placing cabin 

trace contaminant control equipment upstream of the humidity control equipment. These considerations are central 

to a broad spectrum, operationally robust spacecraft cabin TCC equipment design and operational strategy. 

Traditionally, the TCC equipment aboard crewed spacecraft are designed to address the volatile trace organic 
and inorganic chemical loads presented by equipment offgassing and human metabolism.1 TCC systems must pro-

vide cabin air quality that complies with spacecraft maximum allowable concentration (SMAC) standards defined 

by the National Aeronautics and Space Administration (NASA).2 Typically, the TCC process operating conditions 

and flow rates are driven by no more than five chemical compounds. Process flow rates are low, usually ranging 

between 15 m3/hour and 25 m3/hour. Operational margin is incorporated in the TCC equipment design to accommo-

date reasonably-sized spikes in contaminant generation rates. The TCC equipment usually processes the cabin air in 

parallel with other ECLS equipment, in particular the water recovery and purification systems. In such a configura-

tion, the TCC equipment is unable to minimize trace contaminant mass transfer into humidity condensate. Future 

systems must be optimized for and integrated within the ECLS system architecture for this purpose. 

In addition to AR functions, water processing systems are also essential to a closed loop ECLS system for long 

duration manned space flight. As in the natural world, air and water systems on board spacecraft inevitably interact, 

particularly through humidity condensate. Volatile polar organic compounds (VPOCs) in the air can be collected in 
humidity condensate and introduced to the water processing system. These VPOCs must then be removed by the 

water processing system to provide potable water to the crew. While expected levels of VPOCs are anticipated and 

easily handled by existing state-of-the-art (SOA) water processing systems, unexpected spikes can result in water 

that does not comply with potable standards.3 Because VPOCs are more easily removed from the gas phase as com-

pared to the liquid phase, their removal by a TCC located upstream of the humidity condenser can reduce the size, 

weight, and complexity of future water processing systems. For future space vehicles, water processing engineers 

have specified an 80% single pass removal of polar VPOCs before the process air enters the humidity condenser. 

The technical challenge presented by minimizing VPOC mass transfer into the humidity condensate requires a 

solution that provides high single pass removal efficiency and low power consumption while accommodating high 

volumetric flows in the range of 170 m3/hr to 680 m3/hr. Traditional physical adsorption- and thermal catalytic oxi-

dation-based process technologies provide the necessary removal efficiency performance but suffer from high power 
consumption and size issues when scaled to accommodate the required high volumetric flow conditions. 

An alternative to SOA TCC system technologies has been proposed by Honeywell, Inc. to address the technical 

challenge presented by VPOCs. The system uses photocatalytic oxidation (PCO) to remove targeted VPOCs as well 

as other volatile contaminants at high volumetric flow conditions. NASA and Honeywell, Inc. initiated a joint de-

velopment project in July 2008 that culminated in testing a breadboard-fidelity PCO unit from January through May 

2010. The following summarizes the developmental work and key performance testing results. 

II. Background 

A photocatalyst is a material capable of forming electron-hole pairs when exposed to light to produce hydroxyl 

radicals (*OH). In PCO, as shown in Fig. 1, the catalyst is illuminated while exposed to contaminants. Ideally, the 

contaminants are fully oxidized to form CO2 and 

water. However, partial oxidation of VPOCs such as 

ethanol can result in forming intermediate products 

such as acetaldehyde and acetic acid. 

In terrestrial air systems, small quantities of these 

intermediates are not usually cause for concern due 
to the diluting effect provided by frequent exchange 

of external air with circulating air. However, for a 

confined space such as a spacecraft cabin, build-up 

of these intermediates can impact cabin air quality. 

Thus, in order for PCO technology to be a competi-

tive option for SOA TCC systems, partial oxidation 

products must be minimized or eliminated. 

The goals of the PCO development effort under-

taken by Honeywell, Inc. included high ethanol mi-

neralization combined with minimal production of 

 
Figure 1. Photocatalytic oxidation uses light to create 

hydroxyl radicals. Organic compounds are oxidized by 

the radicals to form CO2 and water. 
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partial oxidation products. The development work began in 2008 and a breadboard PCO unit, shown in Fig. 2, was 

fabricated and delivered in December 2009 to NASA’s Marshall Space Flight Center (MSFC) for testing. This unit 

utilized a doped titania (TiO2) catalyst applied to a metallic mesh screen substrate. Two mesh screens were com-

bined to form a panel. The 64 cm × 51 cm × 36 cm 

unit contained a total of six panels. Ultraviolet (UV) 

lamps were placed between the panels. 

A. Test Setup and Conditions 

NASA testing of Honeywell's breadboard PCO 

unit was conducted in the Regenerative Environ-

mental Control and Life Support (ECLS) Module 

Simulator (REMS), shown in Fig. 3, located in the 

North high-bay of Building 4755 at MSFC. The 

REMS provides a ~201 m3 closed environment for 

hardware testing. Human metabolic and trace con-

taminant offgassing loads may be either simulated or 

supplied by test volunteers depending on the nature 

of the test. 

The breadboard PCO unit was installed in the 
REMS working volume at approximately mid-

chamber. A duct transition attached the PCO unit to 

a calibrated venturi flow meter, located downstream 

of the PCO unit. A variable speed fan pulled the 

atmosphere from the REMS working volume 

through the PCO unit and venturi flow meter. The 

exhaust from the PCO unit was directed into the 

REMS ventilation system supply inlet using a flexi-

ble duct. 

Sampling ports were located directly upstream of 

the PCO unit (port 5) and downstream of the unit 
(port 6). This allowed test engineers to determine the 

performance of the PCO unit by observing inlet and 

outlet trace contaminant concentrations. Conditions 

within the REMS were maintained at relative hu-

midity levels 30-60%, O2 levels 19-22.5%, and tem-

peratures 20-25 °C. Samples taken from the 

circulating air through ports 5 and 6 were analyzed 

continuously using an MKS Multigas™ 2030 Fouri-

er-Transform Infrared (FTIR) system. The FTIR 

instrument method was tuned to target ethanol as its 

primary analyte. Periodically, gas chromatograph 

(GC) analysis was completed using an Agilent 
5890N gas chromatograph (GC) equipped with a 

flame ionization detector (FID). A Markes TT24/7 

autosampler conditioned samples before introducing 

them into the GC. The GC analyses targeted all 

chemical molecules used to challenge the PCO unit 

including acetaldehyde. 

B. Test Conduct Summary 

The PCO system was challenged with five mixtures of VOC's as described in Table 1. The compounds used for 

the challenge mixtures were selected based on their observed incidence in ISS cabin air quality analysis results and 

their importance for ECLS system TCC and water processing equipment design and performance.4,5 Mixture 5 was 

chosen to include a broader spectrum of contaminants. Target Concentrations at PCO start-up are listed in two units 
of measure. 

 
Figure 2. Breadboard PCO test article. 

 a. 

 b. 

Figure 3. Regenerative ECLS System Module Simulator. 

a. exterior view, b. interior view. 
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At the beginning of each chemical challenge run, the REMS chamber was closed and conditioned with the de-

sired challenge mixture until the target concentrations listed in Table 1 were reached. Once the desired concentra-

tions were reached, the test rig fan was powered and the PCO unit lamps were turned on. The chemical challenge 

mixture was injected continuously throughout each test run at the rates listed by Table 1. The PCO inlet conditions 

were sampled using the FTIR and GC instruments until a steady-state was reached. At this point, the PCO outlet 

conditions were sampled 
to observe the single-pass 

performance of the PCO. 

A total of seven chem-

ical challenge runs were 

completed. The first five 

chemical challenge runs 

were conducted at 84.95 

m3/hr (50 ft3/minute) flow 

conditions through the 

PCO unit using challenge 

mixtures 1 through 5. Two 

additional runs were ac-
complished at 127.4 m3/hr 

(75 ft3/minute) and 169.9 

m3/hr (100 ft3/minute) 

using challenge mixture 1. 

III. Results 

Testing results of Honeywell's PCO unit are detailed below. Because ethanol was the primary contaminant for 

trials 1-5, bulk ethanol reduction and corresponding acetaldehyde production is addressed first. This is followed by a 

qualitative comparison of steady state reduction in secondary contaminants for trials 1-5. Finally, data from trial 1 is 

combined with data from trials 6 and 7 to compare performance at each of three flow rates. 

A. PCO Unit Catalyst Development 

Honeywell’s catalyst developmental testing indicated both light and dark reactions were possible. For operation 

at 25 °C, the light reaction provided >99% oxidation of ethanol with >99% selectivity toward CO2 when challenged 

with 25.45 mg/minute ethanol (~13 ppm ethanol). The dark reaction, when challenged with the same quantity of 

ethanol, provided 14% oxidation of ethanol with ~93% selectivity toward CO2. Honeywell also challenged the cata-
lyst with ~4.5 ppm dichloromethane which showed a concentration decrease of ~1.5 ppm over 20 minutes. 

B. Trials 1-5: Bulk Ethanol Reduction and Corresponding Acetaldehyde Production at 84.95 m
3
/hr 

For trials 1-5, the PCO unit was challenged with a bulk 

concentration of ethanol. In each of these trials, acetaldehyde 

concentration was shown to rise during ethanol reduction. It 

should be noted that ethanol data was collected by the FTIR, 

while acetaldehyde data was collected by the GC. For each 

set of data, the green line indicates the reportable limit of the 

GC for acetaldehyde. The following summarizes results for 

each trial. 

1. Trial 1: Mixture 1 

For trial 1, the PCO unit was challenged with ethanol 
alone. The REMS ethanol concentration was approximately 5 

ppm before the PCO unit lamps were powered, as shown in 

Fig. 4. 

Once activated, the PCO successfully lowered the REMS 

concentration and maintained the circulating concentration to 

~0.5 ppm. Acetaldehyde in the system was shown to increase 

during the reduction of ethanol, but returned to initial concen-

tration once the system reached steady state. 

Table 1. PCO testing challenge contaminant mixtures. 

Chemical 

Injection 

Rate 

(mg/hr) 

Concentration at 

PCO Start-up 
Challenge Mixture 

(mg/m
3
) (ppm) 1 2 3 4 5 

Ethanol 135 7.6 4.0           

m-Xylene 2.0 0.14 0.032        

Dichloromethane 1.2 0.08 0.023        

Acetone 3.5 0.52 0.22        

Acetaldehyde 3.2 0.2 0.11       

Methanol 6.6 0.3 0.23       

2-Propanol 5.1 0.3 0.12       

Propylene glycol 38.2 1.3 0.42       

Benzyl alcohol 5.1 0.03 0.007       

 

 
Figure 4. PCO bulk reduction of ethanol and 

acetaldehyde when challenged with Mixture 1 

at 84.95 m
3
/hr. Dashed line indicates GC lower 

reportable limit for acetaldehyde. 



 

American Institute of Aeronautics and Astronautics 
 

 

5 

2. Trial 2: Mixture 3 

In trial 2, the PCO unit was challenged with mixture 3 

containing both ethanol and dichloromethane as pre-

viously described. In addition to dichloromethane, which 

will be discussed later, the REMS initially contained ~6.5 

ppm ethanol as shown in Fig. 5. This value is more than 
50% higher than the target of 4.03 ppm. Despite this 

higher initial concentration, the PCO reduced the amount 

of ethanol to a steady state of ~0.5 ppm, the same value 

observed when reducing from 5 ppm as observed in trial 

1. Acetaldehyde concentration was shown to increase 

during the decrease in ethanol reduction but decreased to 

low levels at steady state. This indicates incomplete sin-

gle-pass oxidation of ethanol, but sufficient reaction 

(upon multiple passes) of acetaldehyde to eventually de-

crease bulk acetaldehyde concentrations. Note that the 

break in the data is due to sampling from the exit (port 6) 

of the PCO for a short time to determine single pass con-
versions. 

3. Trial 3: Mixture 4 

During trial 3, the PCO unit was challenged with mix-

ture 4 containing both ethanol and acetone as previously 

described. In addition to acetone, which will be discussed 

later, the REMS initially contained ~4 ppm ethanol and 

~1 ppm acetaldehyde as seen in Fig. 6. This mixture was 

very near the 4.03 ppm ethanol target, but much higher 

than the 0 ppm acetaldehyde target. After activating the 

PCO unit, there was a steady decrease in ethanol concen-

tration to a minimum value of ~0.5 ppm. Acetaldehyde, 
as observed in previous trials, showed an increase as the 

bulk of the ethanol was reduced. This increase was fol-

lowed by a decrease over time indicating acetaldehyde 

production from ethanol, and a slow reduction over time. 

4. Trial 4: Mixture 5 

During trial 4, the PCO unit was challenged with mix-

ture 5 containing nine different contaminants as previous-

ly described. In addition to the other seven contaminants, 

which will be discussed later, the REMS initially con-

tained ~3.5 ppm ethanol and ~1.0 ppm of acetaldehyde. 

The initial ethanol concentration was slightly below the 

target of 4.03 ppm and the acetaldehyde was significantly 
higher than the 0 ppm target. The change in these conta-

minants after the PCO unit was initiated is shown in Fig. 

7. It is clear from the graph that acetaldehyde concentra-

tion increased as ethanol concentration decreased. How-

ever, the acetaldehyde concentration returned to initial 

concentrations when the system reached steady state. 

5. Trial 5: Mixture 2 

During trial 5, the PCO unit was challenged with mix-

ture 2 containing both ethanol and m-xylene as previous-

ly described. In addition to m-xylene, which will be 

discussed later, the REMS initially contained ~4.2 ppm 
ethanol and ~0.35 ppm acetaldehyde, as shown in Fig. 8. 

The initial concentration of ethanol was very close to the 

target value. Once the PCO was initiated, ethanol concen-

tration decreased steadily until a steady state concentra-

 
Figure 5. Concentration dynamic of ethanol and 

acetaldehyde when challenged with mixture 3 at 
84.95 m

3
/hr. Dashed line indicates GC reportable 

limit for acetaldehyde. 

 
Figure 6. Concentration dynamic of ethanol and 

acetaldehyde when challenged with mixture 4 at 

84.95 m
3
/hr. Dashed line indicates GC reportable 

limit for acetaldehyde. 

 
Figure 7. Concentration dynamic of ethanol and 

acetaldehyde when challenged with mixture 5 at 

84.95 m
3
/hr. Dashed line indicates GC reportable 

limit for acetaldehyde. 
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Table 2. GC reportable limits. GC detector 

responses below these limits are considered to 

be “trace” concentrations and are used for 
reference only. 

Chemical 
GC Reportable  

Limit (ppm) 

Acetaldehyde 0.555 

Methanol 0.763 

Ethanol 0.531 

Acetone 0.421 

Dichloromethane 0.288 

Propanol 0.407 

Propylene glycol 0.321 

m-Xylene 0.230 

Benzyl alcohol 0.226 

 

tion of ~0.5 ppm was reached. During this time, the ace-

taldehyde concentration increased significantly. As the 

ethanol concentration was approached the lower steady 

state concentration, acetaldehyde ultimately returned to 

initial values. Note that the break in the data is due to 

sampling from the exit (port 6) of the PCO for a short 
time to determine single pass conversion. 

C. Trials 1-5: Steady State Reduction of Contami-

nants at 84.95 m
3
/hr. 

Following the bulk ethanol concentration reduction 

for each trial, a steady-state analysis of contaminant re-

moval was conducted. GC reportable limits of each con-

taminant are detailed in Table 2, and are indicated in 

each chart by dashed lines. The following summarizes 

the results for each trial. 

1. Trial 1: Steady State Reduction of Mixture 1 

Once the concentrations of ethanol and acetaldehyde 

in the REMS reached steady-state, the inlet and outlet of 
the PCO were sampled to show single pass removal. A 

bar graph of average GC data is shown in Fig. 9. Ethanol 

concentration clearly decreased while acetaldehyde con-

centration showed no significant change. In a single 

pass, ethanol concentration decreased by a factor of ~4.5. 

2. Trial 2: Steady State Reduction of Mixture 3 

Steady state removal of ethanol, acetaldehyde, and 

dichloromethane were evaluated in trial 2. Single pass 

conversion of these contaminants is shown in Fig. 10. 

Both inlet and outlet values of dichloromethane were 

below the GC lower reportable limit. However, qualita-
tively, there was no significant decrease in dichlorome-

thane (0.007+0.006 ppm at inlet versus 0.005+0.001 

ppm at outlet). Similarly, there was no significant de-

crease in acetaldehyde concentration, although this is not 

conclusive due to the presumed production of acetalde-

hyde during ethanol reaction and values at the lower 

reportable limit of the GC. Despite this apparent lack of 

 
Figure 8. Concentration dynamic of ethanol and 

acetaldehyde when challenged with mixture 2 at 

84.95 m
3
/hr. Dashed line indicates GC reportable 

limit for acetaldehyde. 

 
Figure 9. Single pass concentration reduction of 

PCO when challenged with mixture 1 at 

84.95 m
3
/hr. Error bars indicate standard deviation, 

dashed lines indicate the GC reportable limit. 

 
Figure 10. Single pass concentration reduction of 

PCO when challenged with mixture 3 at 

84.95 m
3
/hr. Error bars indicate standard deviation, 

dashed lines indicate the GC reportable limit. 
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change between the inlet and outlet, bulk concentration reduction results, shown previously by Fig. 5 indicates re-

moval of both ethanol and acetaldehyde does occur within the PCO unit. Ethanol concentration decreased by nearly 

a factor of 4. 

3. Trial 3: Steady State Reduction of Mixture 4 

Steady state reduction of ethanol, acetaldehyde, and 

acetone were evaluated in trial 3. A comparison of the 
inlet and outlet of the PCO, once the system had 

reached a steady state, is shown in Fig. 11. The graphs 

indicate no significant decrease in any of the contami-

nants in a single pass through the PCO. However, this 

may be attributed to poor data, as it is clear from Fig. 6, 

that both ethanol and acetaldehyde were reduced during 

operation of the PCO unit. Additionally, measured le-

vels of acetone were well below the GC lower reporta-

ble limit. 

4. Trial 4: Steady State Reduction of Mixture 5 

Steady state reduction of ethanol, acetaldehyde, me-

thanol, m-xylene, dichloromethane, acetone, methanol, 
2-propanol, propylene glycol, and benzyl alcohol were 

evaluated in trial 4. Table 3 shows the measured initial 

concentrations in the REMS compared to the target 

concentrations of each contaminant. The GC lower re-

portable limits are listed for comparison. Based on reported GC values, all of the contaminants were initially high 

with the exceptions of ethanol, m-xylene, and propylene glycol. Ethanol was only slightly below the target. The 

concentration of m-xylene was about 33% lower than targeted while propylene glycol was only about 2% of the 

desired concentration. The remaining contaminants ranged from being 10% over target (2-propanol) to being an 

order of magnitude higher than the target (acetaldehyde). 

With the exception of ethanol, m-xylene, acetaldehyde and propylene glycol, there was no significant decrease 

observed in the concentration of the contaminants in the REMS between pre-PCO GC values and values observed 
when the REMS reached steady state (1,500-

1,800 minutes).  

A steady-state comparison of PCO inlet and 

outlet ports is shown in Fig. 12. Due to the low 

concentrations of certain contaminants, Fig. 13 

provides a scaled version of the low-

concentration contaminants. With the exception 

of propylene glycol and benzyl alcohol, all con-

taminants showed a decrease in concentration 

during a single pass reduction in the PCO. The 

results for propylene glycol, benzyl alcohol, and 

2-propanol were in conclusive due to the error 
in measurements. Dichloromethane and ethanol 

concentration at the PCO outlet decreased by 

the most relative to the PCO inlet at 75% and 

83%, respectively. Concentrations of acetalde-

hyde, methanol, acetone, and xylene at the PCO 

outlet decreased at the more moderate percen-

tages of 45%, 29%, 27%, and 37.5%, respectively, relative to the PCO inlet concentration. 

5. Trial 5: Steady State Reduction of Mixture 2 

Steady state reduction of ethanol, acetaldehyde, and m-xylene was evaluated in trial 4. Figure 14 shows the re-

sults of single pass conversion as observed by the GC. Ethanol concentration was shown to decrease by nearly a 

factor of four—3.75 ppm to 1.04 ppm. Acetaldehyde and xylene were shown to decrease by approximately half—
1.3 ppm to 0.76 ppm and 0.0076 ppm to 0.0035 ppm, respectively—although detected m-xylene values are well 

below the GC lower reportable limit. 

 
Figure 11. Single pass concentration reduction of 

PCO when challenged with mixture 4 at 

84.95 m
3
/hr. Error bars indicate standard deviation, 

dashed lines indicate the GC reportable limit. 

Table 3. Mixture 5 measured vs. target concentrations. 

Chemical 

Concentration (ppm) 

Target Measured 

GC 

Reportable 

Limit 

Ethanol 4 3.5 0.53 

m-Xylene 0.032 0.02 0.23 

Dichloromethane 0.023 0.05 0.29 

Acetone 0.22 0.34 0.42 

Acetaldehyde 0.11 1.04 0.56 

Methanol 0.23 0.55 0.76 

2-Propanol 0.12 0.11 0.41 

Propylene glycol 0.42 0.01 0.32 

Benzyl alcohol 0.007 0.01 0.23 
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D. Trials 1, 6 and 7: Influence of Flow Rate on PCO Performance 

During trials 1, 6, and 7, the PCO unit was challenged with mixture 1 at flow rates of 84.95 m3/hour, 127.43 

m3/hour, and 169.9 m3/hour, respectively. While every attempt was made to have similar initial conditions for each 

test, this was not always feasible as seen in Fig. 15. For flow rates of 84.95 m3/hour and 127.43 m3/hour, the inlet 

ethanol concentration was ~2.5 ppm, while the concentration for the 169.9 m3/hour flow rate was ~4.25 ppm. Simi-

larly, the inlet acetaldehyde concentration for flow rates 84.95 m3/hour and 127.43 m3/hour were ~1.35 ppm, while 

the concentration for the 169.9 m3/hour flow rate was ~2.8 ppm. Inexplicably, acetone and methanol were observed 

during the 127.43 m3/hour trail, although values were below the GC reportable limit. These contaminants were not 
observed in the 84.95 m3/hour or 169.9 m3/hour trials. 

Significant ethanol concentration reduction was observed for the 84.95 m3/hour flow rate only. Increased flow 

rates showed no significant concentration reduction for ethanol or acetaldehyde. It should be noted that the unit was 

only designed for 76.46 m3/hour (45 ft3/minute) flow. Additionally, if no concentration reduction was occurring at 

the higher flows, the continuous injection of ethanol into the system should have increased total REMS ethanol con-

centration over time. However, this was not observed. Thus, based on the GC data, the PCO unit, while not reducing 

the total ethanol concentration in the REMS chamber, appeared to be capable of removing ethanol at the rate of in-

troduction into the REMS chamber. 

 
Figure 12. Single pass concentration reduction of 

PCO when challenged with mixture 5 at 

84.95 m
3
/hr. Error bars indicate standard deviation, 

dashed lines indicate GC reportable limit. 

 
Figure 13. Low concentration contaminants during 

the single pass reduction of PCO when challenged 

with mixture 5. Error bars indicate standard devia-

tion, dashed lines indicate GC reportable limit. 

 
Figure 14. Single pass concentration reduction of 

PCO when challenged with mixture 2 at 

84.95 m
3
/hr. Error bars indicate standard deviation, 

dashed lines indicate GC reportable limit. 

 
Figure 15. PCO reduction of Mixture 1 at 

84.95 m
3
/hr, 127.4 m

3
/hr and 169.9 m

3
/hr flow 

rates. Error bars indicate standard deviation, dashed 

lines indicate GC reportable limit. 
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IV. Discussion 

A breadboard PCO unit was tested in a total of seven trials. Trials 1-5 were conducted to evaluate PCO unit per-

formance when challenged with five contaminant mixtures at 84.95 m3/hour. Trials 6 and 7 were conducted to de-

termine the effect of flow rate on PCO performance. 

In general, testing results are assessed based on li-

mited GC data. All GC sampling was accomplished 

manually resulting in fewer data points than desired 

for each trial. Secondly, in all but the first trial, the 

bulk concentration in the REMS working volume was 

not entirely stable before the PCO was activated. 
While the data were accepted as if the bulk concentra-

tion had been constant, more conclusive results will 

require additional time for the REMS to stabilize be-

fore PCO unit activation. Thirdly, there were some 

observed discrepancies between FTIR and GC read-

ings for ethanol—the only chemical targeted with both 

instruments. These analytical methods should be con-

sistent with both themselves and each other to lend 

reliability to each method. Occasionally, there was an 

observed variation in GC sample data when samples 

were taken within minutes of each other. This varia-
tion was found to result from differing performance of 

the two GC preconcentration traps. 

With the exception of ethanol and acetaldehyde, all 

measured contaminant levels were below GC lower 

reportable limits, making the results more qualitative 

than quantitative. For future testing, it will be neces-

sary to either calibrate the GC at concentrations similar 

to those being tested, or complete analyses with a 

another method capable of measuring the low ppm 

levels of contaminants. 

Completion of trials 1-5 provided data on each of 
the five contaminant mixtures. Each contained ethanol 

targeted to 4.03 ppm. Although each of the trials 

started with a different level of ethanol, when the data 

are time-corrected and overlaid, as seen in Fig. 16, it is 

clear that the ethanol concentration reduction rate was 

nearly identical regardless of the mixture. This indi-

cates that secondary or mixtures of contaminants did 

not affect the ethanol concentration reduction rate. 

Additionally, acetaldehyde was produced during 

the concentration reduction of the mixtures as shown 

in Fig. 17. The acetaldehyde concentration would 

dramatically increase during the initial concentration 
reduction of ethanol. The acetaldehyde concentration 

would peak near the end of the bulk ethanol concentra-

tion reduction and would level out to values similar to 

initial concentrations. Muggli et al reported a similar 

effect when using photocatalytic oxidation for ethanol 

reduction.
6
 Although Honeywell did not report acetal-

dehyde production when the PCO catalyst was illumi-

nated; there was an observed dark reaction. The 

expectation for the breadboard PCO unit was no ace-

taldehyde production. Acetaldehyde production by the 

breadboard PCO unit may be explained in three possi-

 
Figure 16. Ethanol concentration reduction for all 

mixtures at 84.95 m
3
/hr. 

 
Figure 17. Acetaldehyde concentration rises as 

ethanol concentration falls for all mixtures. 

 
Figure 18. PCO unit design prevents catalyst 

illumination at the entrance and exit of the unit. 
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ble ways. First, Honeywell was testing catalyst coated on a different substrate geometry than the final mesh panel 

geometry. The difference in catalyst substrate geometry of the systems would be expected to introduce some discre-

pancies. Second, Honeywell reported that when the lamps were off, a dark reaction was observed in which high con-

centrations of acetaldehyde were produced from ethanol. Due to the design of the breadboard PCO unit, the outer 

panels each had a side that was not illuminated as shown in Fig. 18. These "dark" areas may have contributed to the 

observed levels of acetaldehyde. Third, during pre-conditioning of the REMS, the PCO was exposed to bulk air. 
While there was no forced flow across the system, it is possible that ethanol diffused through the air to pre-adsorb on 

the PCO screens. The exposure of the system to ethanol while "dark" would have produced acetaldehyde. Because 

there was no flow through the system, the only available acetaldehyde transport would have been through diffusion. 

The bulk of the acetaldehyde would have been concentrated near the PCO unit. When the system was activated, this 

bulk concentration of acetaldehyde would then be introduced to the REMS where it was detected. Muggli's paper 

also indicated the formation of acetic acid. Testing at MSFC did not evaluate samples for this compound with the 

GC or FTIR. However, test engineers commented on a "vinegar-like" odor in the REMS during testing. Based on 

this reported odor, it is highly likely that the PCO also generated acetic acid. The formation of acetaldehyde and 

acetic acid then become a concern to cabin air quality as well as downstream water processing equipment which is 

sensitive to acetate concentration in feed water. 

As stated previously, trials 6 and 7 were completed 

to compare ethanol concentration reduction by the PCO 
at higher flow rates than that tested in trial 1. This 

comparison, shown in Fig. 19, clearly shows a decrease 

in efficiency with increasing flow rate. Not only was 

the rate of concentration reduction decreased for in-

creased flow rates, as indicated by the slope of the 

lines, but also the ultimate steady-state concentration 

was higher with increased flow rate. Thus, even with 

recycling of the streams, the unit could not lower the 

concentrations beyond a flow rate-based threshold. 

Because the breadboard PCO unit was designed for 

76.46 m3/hour flow rates, it was expected that the rate 
of concentration reduction would decrease due to lower 

residence times in the reactor. However, it was some-

what surprising to see that the concentration plateau 

decreased. This suggests that mass transport of ethanol 

molecules from the bulk flow to the surface of the catalyst is the rate limiting step rather than the catalytic activity of 

the surface. 

MSFC’s testing of Honeywell's PCO unit used simplified mixtures designed to represent larger groups of VOC's 

(acetone for ketones, dichloromethane for halocarbons, etc.). Testing completed by Hodgson et al explored more 

complex mixtures challenging a PCO unit containing a tungsten oxide catalyst with individual VOC concentrations 

below 10 ppb.7 The group reported that alcohols and glycol ethers were the most reactive chemical classes and were 

reduced by about 70% in testing. While the breadboard PCO unit was not challenged with glycol ethers, Hodgson's 

observed ethanol concentration trend was also observed in MSFC’s testing during which observed ethanol single 
pass efficiency was around 72-75% for most mixtures. Muggli reports that ketones and hydrocarbons were less reac-

tive. This was also observed in MSFC’s testing of the breadboard PCO unit. 

Testing of Honeywell's PCO unit was completed to explore the potential of using photocatalytic oxidation as a 

replacement to SOA TCC systems. From the data gathered in this study, two things are very clear. First, a PCO unit 

would not be a complete replacement for the existing TCC system. Due to the formation of unwanted byproducts, 

namely acetaldehyde and potentially acetic acid, as well as the limited activity for 2-propanol reaction and probable 

inactivity for benzyl alcohol and propylene glycol reaction, it is clear that the PCO alone does not have the neces-

sary capability to handle all the contaminants that may be present in space cabins. Second, there is significant con-

cern with siloxanes. For this testing, the unit was not challenged with siloxanes due to a paper published by Hay et al 

in which siloxanes were shown to deactivate photocatalytic air purifiers by coating the catalyst with a silicon-rich 

layer.8 This effect, coupled with the first concern for the PCO unit, means that the PCO unit, if used as an alternative 
to SOA TCC technology would require additional, supportive equipment to operate. The system would require up-

stream removal of siloxanes as well as a supplemental processing stages for contaminants that PCO is not capable of 

mineralizing. Thus, the PCO could not be used as a complete replacement for SOA TCC technology that uses physi-

cal adsorption and thermal catalytic oxidation. 

 
Figure 19. PCO efficiency based on flow rate when 

challenged with mixture 1. 
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V. Summary 

A total of seven trials were completed to explore the performance of a breadboard PCO unit. A summary of the 

most significant observations is the following: 

 Ethanol single pass removal efficiency averaged 74% for the test trials. 

 The ethanol concentration reduction rate, based on bulk REMS concentration, was identical for all tests trials. 

 Ethanol single pass removal efficiency is a function of flow rate through the system which is likely due to 

mass transport limitations. 

 The PCO showed capability of removing ethanol, acetaldehyde, m-xylene, acetone, and dichloromethane in at 

least one test. 

 The PCO showed no significant capability for removing 2-propanol, propylene glycol, or benzyl alcohol; 

however, this may be due to operating at challenge concentrations near analytical method reportable limits. 

 Acetaldehyde concentration increased as ethanol concentration decreased for all test trails. 

 The observed quantity of acetaldehyde formed is directly proportional to the initial concentration of ethanol 

in the bulk air. 

VI. Conclusions 

Testing of a breadboard PCO unit provided a better understanding of full scale potential. It is clear from the data 

that a PCO unit may not be a singular answer to future spacecraft TCC technology applications. Rather, the PCO has 

the capability to reduce large quantities of VOCs but will likely require the assistance of additional processors. In 

particular, siloxanes must be removed upstream of a PCO system to prevent fouling. The breadboard PCO unit per-

formed similarly to existing hardware as published in scientific journals. Formation of acetaldehyde, and possibly 

acetic acid, are a cabin air quality concern that must be addressed as PCO process technology development 

progresses. Finally, additional testing will be crucial to understanding the full capabilities of PCO as a spacecraft 

cabin TCC technology. 
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