Space Geodesy Project (SGP) Colocation considerations and Radio Frequency Interference (RFI) Mitigation Techniques

> L. M. Hilliard Lawrence.M.Hilliard@NASA.gov , Beaudoin, Christopher, <u>cbeaudoin@haystack.mit.edu</u> Corey, Brian, <u>bec@haystack.mit.edu</u> Petrachenko, William, <u>Bill.Petrachenko@nrc-cnrc.gc.ca</u>

¹NASA Goddard Space Flight Center, Greenbelt MD, USA ² MIT Haystack Observatory, Westford MA, USA ³ National Research Council Canada

Space Geodesy Project (SGP)

- Modeling the GGAO environment and VLBI2010 susceptibility before & after the trees came down
- Measuring the DORIS Beacon, and the NGSLR radars in South , radar masks & DORIS path loss provide mitigation
- Measuring 12m side lobes with a standard gain horn simulator <u>></u>100m away
- Mitigate RFI with masks, filtering, and shielding

RF Compatibility Methodology

Measurement of Transmitter Radiation Properties

MOBLAS 7 Summary	Locatio n	Expected Power (+/- 2 dB)	Measured Power			
			No Obstruction	Radom e	Railings	Radome- Railings
	Loc #2	-4.1 dBm	-4.9 dBm	-7.0		-0.7
	GODE W	-1.0 dBm	-o.8 dBm	-5.9	8.1	2.4

NGSLR Summary

Locatio	Expected Power (+/- 2 dB)	Measured Power		
n		No Obstruction	Radom e	
Loc #2 DORIS S	-3.0 dBm ummary	-3.6 dBm	-0.7	

Location	Expected Power	Measured Power	
DORIS Pad	-1.3 dBm	-1 dBm	
Observatory Pad	-29.5 dBm	-27.6 dBm	

- DORIS and SLR radar power levels were measured using S and X-band standard gain horn antennas
- SLR Radar Power Level Measurement Memo:

http://www.haystack.mit.edu/geo/vlbi_td/BBDev/037.pdf

High pass filter in current configuration of GGAO VLBI front end

- Prior to use of pre amp filter
- Isolated S-band harmonic distortion generation to a stage between the LNA and the fiber

 New configuration will adapt gain and filtering to low end of the band

12 Weter side lobe

characterization at GGAO

antenna gain vs. angle between 12-m boresight and transmitter. The data have been binned by angle into 40 bins equispaced in log(angle). The 4 "curves" are

red 100th percentile in each bin (i.e., max gain)

green 90th percentile

0.0-

0.5-

blue 50th percentile (i.e., median gain) black ITU-R SA.509 standard for the 90th percentile of the far-field gain of a large antenna

12 m Sidelobe views it peripherally in the North

Sidelobe Measurement of 12 meter antenna - with beacon deployed near NGSLR LHRS phase center

Comparison to ANSI sidelobe

envelope

ng2ng3tot.dbi.dat1: 9 GHz, V/V, NGSLR site

Figure 1: ITU-5009 antenna sidelobe envelope model incorporated in numerical RFI-compatibility studies.

Absorber/reflector Material Evaluation: X-band

Transfer Coefficients (Absorber/relector Combinations)

S11 & S22 Comparison of thin

Reflector materials

- S11 & S22 Comparison of AL100 (Silver) and Laminated MW Absorber (Black):
 - P1: Absorber (EC SF-9.5)
 - P2: Reflector

Amplitude- Dark Gray absorber

Silver Reflector

ANW-75 absorber material

ERSON

characteristics

- ANW-75
 - Reflectivity range(>20 dB)
 >2.4 GHz
 - Thickness: 2.9 cm
 - Weight: o.8o kg/piece
 - Density:0.07 g/cm3

Configuration for Radar Shield experiments

Sidelobe Measurement of 12 meter antenna - with beacon deployed near NGSLR LHRS phase center

Sidelobe Level Intensity Map of Data Set: ng2ng3tot.dbi.dat1

Radar absorber/reflector barrier design and test – Mob7 radar platform

DORIS beacon characteristics

S-Band (DORIS frequency) shielding

effectiveness

• <u>http://www.feko.info/</u>

- Physical Optics and Uniform Theory of Diffraction
- at 5m, the linear dimension of the square barrier was 2*5*tan(6deg)
 - 1 meter
- 20m the square barrier was 2*20*tan(6deg).
 - 4 meters

Total Gain (Frequency = 2.036 GHz; Phi = 0 deg)

Material Analysis: S-band

 Eccosorb SF-2.0

Reflection Coefficients

12.2

2.5E+09

2.7E+09

Material Evaluation: S-band

- Eccosorb SF-2.0
- Thicker material wedged between waveguide launchers
 4"x 4" sample

Tradeoffs to RFI Mitigation Techniques

Technique	Current Implementation	Current results/limitations	Next steps
Masking	MOBLAS 7/ 20 ⁰ NGSLR / 30 ⁰ VLBI/ 40 ⁰ and 30 ⁰	May 16 th geodetic test lost targets due to mask	Masks will be removed when absorber/reflector go up
Filtering	3.9 GHz highpass filter immediately preceding the fiber transmitter	Broadband system cannot form baselines with legacy S-band channels	Combination of high pass filter and isolation w/ tailored dynamic range . Notch at 9.41 GHz under consideration
Shielding	Radars are blocked by GGAO buildings	Radar platform guard rail occupies space. Metal guardrails re- resonate	Deliberate shielding must control back reflection
Absorbing	No absorber currently deployed		Cover guard rails
Shielding/ Absorbing	Further experiments necessary. 35 degree above horizontal experiment – must be all - weather		essary. 35 degree above must be all - weather