

1

TOWARDS UNDERSTANDING THE DO-178C / ED-12C

ASSURANCE CASE

C.M. Holloway

NASA Langley Research Center, Hampton VA, USA, c.michael.holloway@nasa.gov

Keywords: assurance case, software, standards, certification,

confidence

Abstract

This paper describes initial work towards building an explicit

assurance case for DO-178C / ED-12C. Two specific

questions are explored: (1) What are some of the assumptions

upon which the guidance in the document relies, and (2) What

claims are made concerning test coverage analysis?

1 Introduction

For about two decades, compliance with Software

Considerations in Airborne Systems and Equipment

Certification (DO-178B / ED-12B) [7] has been the primary

means for receiving regulatory approval for using software on

commercial airplanes. Despite frequent and occasionally

strident criticisms of the standard from various quarters, the

empirical evidence is quite strong that it has been successful.

Not only has no fatal commercial aircraft accident been

attributed to a software error, many of the technological

improvements that have been credited with significantly

reducing the accident rate have relied heavily on software.

For example, controlled flight into terrain—once one of the

most common accident categories—has been nearly

eliminated by Enhanced Ground Proximity Warning Systems,

which are software-intensive [15].

The next edition of the standard, DO-178C / ED-12C, has

been published by the issuing bodies [8]. New editions of

two associated documents have also been published: Software

Integrity Assurance Considerations for Communication,

Navigation, Surveillance and Air Traffic Management

(CNS/ATM) Systems (DO-278A / ED-109A) [10], and

Supporting Information (DO-248C / ED-94C) [9].

Additionally four new guidance documents have been

published to address software tool qualification

considerations (DO-330 / ED-215) [11], model-based

development and verification (DO-331 / ED-216) [12],

object-oriented technology (DO-332 / ED-217) [13], and

formal methods (DO-333 / ED-218) [14]. These standards

have not yet received official regulatory authority approval,

but the granting of approval is expected in due course.

The stated purpose of DO-178C / ED-12C remains essentially

unchanged: providing guidance ―for the production of

software for airborne systems and equipment that performs its

intended function with a level of confidence in safety that

complies with airworthiness requirements.‖ In DO-178B /

ED-12B little or no rationale is given for how a particular

objective or collection of objectives contributes to achieving

this purpose. Thus, the assurance case for the document is

implicit. Empirical evidence suggests that this implicit

assurance case is adequate, but its implicitness makes

analysing why it is adequate quite difficult. DO-178C / ED-

12C is also mostly rationale-free, but the revised edition of

DO-248C / ED-94C includes a new section: ‗Rationale for

DO-178C [ED-12C] / DO-278A [ED-94C]‘. This rationale

section provides a basis from which building an explicit

assurance case may be feasible.

This paper describes preliminary work towards building such

an explicit assurance case for DO-178C / ED-12C. Two

specific questions are explored: (1) What are some of the

assumptions upon which the guidance in the document relies,

and (2) What claims are made concerning test coverage

analysis?

The remainder of the paper is organized as follows. Section 2

provides brief background material about the DO-178C / ED-

12C document and the assurance case concept. Section 3

explores question (1). Section 4 discusses some initial

possible answers to question (2). Section 5 explains potential

future work and presents concluding remarks.

2 Background

The primary intended audience of this paper is people who

are at least passingly familiar with both DO-178B / ED-12B

and the assurance case concept. This section provides

background information for readers who fall outside of this

primary audience.

2.1 About DO-178C / ED-12C

Appendix A in DO-178C / ED-12C [8] contains a summary

of the history of the DO-178 / ED-12 series of documents.

The information below is derived from, and all quotations are

taken from, this appendix.

The initial document in the series was published in 1982, with

revision A following only three years later in 1985. Work on

revision B began in the fall of 1989; the completed document,

which was a complete rewrite of the guidance, was published

in December 1992. This version introduced the notion of five

2

different possible software levels, with Level A denoting the

highest level (on which the most rigorous objectives were

levelled), and Level E denoting the lowest level (on which no

objectives were levelled).

Twelve years after the adoption of DO-178B / ED-12B,

RTCA and EUROCAE moved to update it, when they

approved the creation of a joint special committee / working

group in December 2004 (SC-205/WG-71).

This group began meeting in March 2005, and completed its

work in November 2011. It operated under directions that

called for (among other things) maintaining an ―objective-

based approach for software assurance‖ and the ―technology

independent nature‖ of the objectives. The special

committee/working group was also directed to seek to

maintain ―backward compatibility with DO-178B / ED-12B‖

except where doing so would fail to ―adequately address the

current states of the art and practice in software development

in support of system safety‖, ―to address emerging trends‖, or

―to allow change with technology.‖ The documents produced

by the efforts are listed above.

As a result of the terms of reference and operating

instructions, DO-178C / ED-12C can be best thought of as an

update to, as opposed to a re-write or substantial revision of,

DO-178B / ED-12B. Differences between the documents

include simple corrections of known errors and

inconsistencies, changes in wording intended for clarification

and consistency, an added emphasis on the importance of the

full body of the document, a change in tool qualification

criteria and the related creation of a separate document for

tool qualification, modification of the discussion of system

aspects related to software development, closing of some

perceived gaps in guidance, and the creation of technology-

specific supplements for formal methods, object-oriented

technology, and model-based design and verification.

2.2 About the assurance case concept

The basic concept of an assurance case is simple
1
: provide a

structured argument supported by evidence explaining why a

particular claim about a system property is true. The most

common instantiation of the concept involves claims about

the system property of safety; hence the specific term safety

case is perhaps more widely known than the more generic

term.

Claims, arguments, and evidence constitute the three

necessary components of an assurance case. Each of these

components must be stated explicitly and clearly in order to

produce a cogent assurance case. A critical aspect of an

explicit and clear statement is articulating the context within

1
 Although the concept is simple, much active research is on-

going about how to best create, express, analyse, improve,

and maintain assurance cases (for example, [1], [2], [4], [5],

[19]).

and assumptions upon which the claims, arguments, and

evidence depend.

Some existing approaches and notations for expressing

assurance cases distinguish between context and assumptions

[3]. For the purposes of this paper, we consider such a

distinction to be unnecessary. Both refer to information that is

not directly part of the explicit claims, arguments, or

evidence, but without which the claims, arguments, and

evidence cannot be understood fully or evaluated properly.

As a simple example of the importance of context and

assumptions, consider the following claim: Improved helmet

design will reduce the severity of concussions in football.

Someone reading this claim in Edinburgh, Scotland, UK, is

likely to find it unintelligible. ―Helmets in football? There

are no helmets in football!‖ In contrast, someone reading the

same claim in Edinburgh, Indiana, USA, is likely to find it

easy to understand. They will assume that the claim is to be

interpreted within the context of American football, in which

helmets are a required piece of equipment (aka kit).

Because of the importance of explicitly enumerating

assumptions, one of the first activities that must be

undertaken in trying to articulate the assurance case implicitly

contained in DO-178C / ED-12C is to understand the context

within and assumptions upon which the guidance rests.

Initials steps towards this articulation are described in the

next section.

3 Foundational assumptions

The work towards identifying all the relevant context and

assumptions for the guidance has just begun. Thus far, four

important categories have been discovered: the goal of

satisfying airworthiness requirements; an implied relationship

between safety and correctness; permission of process

flexibility; and reliance on standard software engineering

practices.

3.1 Satisfying airworthiness requirements

As noted in the introduction, the stated purpose of DO-178C /

ED-12C is to ―provide guidance for the production of

software for airborne systems and equipment that performs its

intended function with a level of confidence in safety that

complies with airworthiness requirements‖ [8, p. 1] The

document itself does not provide any additional details about

what constitutes the airworthiness requirements. Users of the

document are expected to know the specific requirements that

apply to the system they are developing. These requirements

must be included as a critical part of the context of any

assurance case.

3.2 Relationship between safety and correctness

Section 2 of DO-178C / ED-12C and Section 5.2 of the

Rationale make clear that the guidance is based on the

assumption that adequate system safety processes have been

followed in determining the requirements placed on the

3

software and its criticality level. For example, the Rationale

states that ―Software/assurance levels and allocated system

requirements are a result of the system development and

safety assessment processes‖ [9, p. 126]

These sections also make clear that all relevant safety-specific

requirements are expected to be included. That is, one of the

inputs that must be available before the guidance is applied is

a comprehensive set of the requirements, including all of the

requirements that must be satisfied to ensure an adequate

level of safety is maintained. DO-178C / ED-12C is not

concerned with determining or analysing these safety

requirements, but only in satisfying them. Hence, it is strictly

true, as is often asserted, that the standard is not a safety

standard [6]. Conducting system safety analysis is

intentionally outside of the scope of the guidance. Guidance

for it is expected from other documents (for example [16],

[17]).

A reader may thus ask how safety can be legitimately

mentioned as an important part of the purpose of the

guidance. The answer to this question is based on the

following reasoning, which is not explicitly stated, but

definitely implied. Given a set of requirements that includes

everything necessary to provide an adequate level of safety,

then ensuring that the requirements are met necessarily

ensures that the adequate level of safety is provided. So, the

guidance needs to be concerned only with ensuring that

software satisfies its requirements. Within the context to

which the guidance applies, software system correctness

necessarily implies software system safety. This implication

does not hold in the general case, but it does hold in this

specific case. Thus, the DO-178C / ED-12C assurance case

can concentrate on demonstrating correctness of

implementation.

3.3 Permission of process flexibility

Another foundational assumption of DO-178C / ED-12C may

come as a surprise to people whose only exposure to the

guidance and its ancestors comes through criticisms by

academics: developers are permitted wide process flexibility.

As stated in the Rationale, ―The committee wanted to avoid

prescribing any specific development methodology. [The

guidance] allows for a software life cycle to be defined with

any suitable life cycle model(s) to be chosen for software

development. This is further supported by the introduction of

‗transition criteria‘. Specific transition criteria between one

process and the next are not prescribed, rather [the guidance]

states that transition criteria should be defined and adhered to

throughout the development life cycle(s) selected‖ [9, p. 126].

The DO-178C / ED-12C guidance does include detailed

descriptions of specific activities that may be performed in

order to satisfy particular objectives. However, the guidance

also explicitly states that the activities themselves may be

changed: ―The applicant should plan a set of activities that

satisfy the objectives. This document describes activities for

achieving those objectives. The applicant may plan and,

subject to approval of the certification authority, adopt

alternative activities to those described in this document. The

applicant may also plan and conduct additional activities that

are determined to be necessary‖ [8, p. 3].

This flexibility must be considered in the creation of an

assurance case. It means that certain parts of the argument

should permit alternate instantiations. An instantiation based

on the activities described in the guidance can be developed,

but it should be made clear that this is only an example, and

that other instantiations may be possible.

3.4 Reliance on standard software engineering practices

The fourth foundational assumption of DO-178C / ED-12C

that has been uncovered thus far is that it relies in substantial

part on the efficacy of standard software engineering

practices. The overview section of the Rationale identifies

this reliance clearly: ―Since DO-178C / DO-278A heavily

borrows from standard software engineering principles that

are well understood, rationale is only provided for those

elements within the document that are specific to aircraft

certification (or CNS/ATM system approval). The reader is

directed to the public literature for rationale for items not

covered in this section‖ [9, p. 125].

In creating an assurance case, a decision must be made about

how to handle those parts of the guidance for which the

rationale lies in standard practice. One option is to terminate

the analysis of such parts with a reference to practice.

Another option is to continue the analysis by including

claims, arguments, and evidence provided in the ‗public

literature‘ mentioned in the Rationale (such as [6] [18]).

4 Test Coverage Analysis

Besides exploring the assumptions underlying the DO-178B /

ED-12C guidance, the other preliminary work that has been

conducted thus far is considering a specific aspect of the

guidance, namely test coverage analysis. This area was

chosen because test coverage has been among the most

frequently criticised aspects of DO-178B / ED-12B, and is

likely to continue to be so for the updated guidance.

The particular question that guided the initial work was,

―What claims are made concerning test coverage analysis?‖ A

careful articulation of the actual claims concerning test

coverage should help clarify whether the criticisms are valid,

or simply based on misunderstandings. Valid criticisms will

definitely affect the assurance case that is eventually

produced, by identifying parts of the case in which confidence

should not be placed. The potential effect on the assurance

case of existing misunderstandings is less clear-cut.

Guidance for testing is provided in Section 6.4 [8, pp. 44-51],

with test coverage analysis guidance given in Section 6.4.4 [8,

pp. 49-51]. Testing objectives are summarised in Table A-6

[8, p. 101]; test coverage objectives are summarised in Table

A-7 [8, p. 102]. Supporting Information [9] contains a

4

discussion in the Rationale section [9, p. 129-130] and several

frequently asked questions and discussion papers related to

test coverage:

 FAQ #42 What needs to be considered when performing

structural coverage at the object code level? [9, p. 22]

 FAQ #43 What is the intent of structural coverage

analysis [9, pp. 23 – 24]

 FAQ #44 Why is structural testing not a DO-178C / DO-

278A requirement? [9, p. 24]

 FAQ #74 What is the difference between the

development and life cycle objectives stated in DO-178C

for Level A versus Level B software, and how does that

relate to safety? [9, pp. 38-39]

 DP #8 Structural Coverage and Safety Objectives [9, pp.

70 – 71].

 DP #13 Discussion of Statement Coverage, Decision

Coverage, and Modified Condition/Decision Coverage

(MC/DC) [9, pp. 81- 88].

The guidance and supporting information distinguishes

between the purposes of testing and the purposes of test

coverage analysis. Testing is intended ―to demonstrate that

the software satisfies its requirements and demonstrate that

errors that could lead to unacceptable failure conditions, as

determined by the system safety assessment process, have

been removed‖ [8, p. 44]. The objectives associated with

testing involve the relationship between executable object

code and its requirements, along with the compatibility of the

executable object code with the target computer. Testing is

all about the software product itself.

Test coverage analysis, on the other hand, has different

purposes. Two types of coverage analysis are described in

the guidance: requirements-based test coverage analysis, and

structural coverage analysis. The purpose of the former is

simply to analyse the test cases that were used in the

requirements-based testing to confirm that they satisfy the

criteria of the guidance. The purpose of the latter is a bit less

well understood. Hence the abundance of popular criticism of

the structural coverage criteria, and the amount of space

devoted to it in Supporting Information. Determining the

structural coverage claims that should be included in an

assurance case is difficult. The discussion in the rest of this

section is only a beginning towards that determination.

Concerning structural coverage analysis, the guidance states

that it ―determines which code structure, including interfaces

between components, was not exercised by the requirements-

based test procedures. The requirements-based test cases may

not have completely exercised the code structure, including

interfaces, so structural coverage analysis is performed and

additional verification produced to provide structural

coverage‖ [8, p. 49].

It is important to recognize that structural coverage analysis is

not presented in the guidance as a form of testing. It is

presented as a means of determining whether the

requirements-based tests covered the code to the extent

required by the software level. If the analysis shows that

adequate coverage has been achieved, no additional tests are

required
2
.

Evaluating the thoroughness of requirements-based testing is

the purpose explicitly mentioned in the guidance. FAQ #43

mentions two additional purposes: providing ―evidence that

the code structure was verified to the degree required for the

applicable software level‖, and providing ―a means to support

demonstration of absence of unintended functions.‖

Concerning the first of these additional purposes, the

guidance requires demonstrating increasingly higher degrees

of coverage for higher software level. Level D does not

require any structural coverage analysis. Level C requires

achieving statement coverage (every statement in the program

is invoked at least once). Level B requires decision coverage

(every entry and exit point to the program is invoked at least

once and every decision in the program has taken on all

possible outcomes at least once). For Level A software,

achieving modified condition / decision coverage (MC/DC) is

required (decision coverage with the additional requirement

that ―each condition in a decision has been shown to

independently affect a decision‘s outcome‖ [8, p. 114]).

Intuitively, the notion of basing the thoroughness of coverage

requirements on the criticality of the software makes sense.

Executing more code structure should justify higher

confidence that errors have not been missed than executing

less. For the Level C and B requirements, the Rationale

section [9, p. 130] provides little additional insight beyond

this intuitive notion. For the Level C requirement it simply

states that statement coverage was ―deemed satisfactory‖, and

for Level B it says that decision coverage ―was considered

sufficient to address the increase in the associated hazard

category.‖

The Rationale‘s discussion about the reasons behind the

MC/DC requirement does provide insight. MC/DC was

introduced in DO-178B / ED-12B. Its introduction is

identified as a compromise ―based on experience gained from

three aircraft programs, where an approach derived from

hardware logic testing that concentrated on showing that each

term in a Boolean expression can be shown to affect the

result, was applied to software.‖ This compromise was

between the committee‘s desire that for level A software all

logic expressions should be fully explored, and the

recognition that ―the use of techniques such as multiple

condition decision coverage, or exhaustive truth table

evaluation to fully explore all of the logic was …

impractical.‖

2
 If someone says, for example, ―You have to do MC/DC

testing on Level A software,‖ they are either using the

language very loosely, or they do not know what they are

talking about (or perhaps both). Anyone doubting the truth of

this statement should consult FAQ #44 [9, p. 24].

5

Concerning demonstrating unintended function, structural

coverage analysis serves to help close a gap that might be left

by requirements-based testing. As FAQ #43 states, ―Code

that is implemented without being linked to requirements may

not be exercised by requirements-based tests. Such code

could result in unintended functionality‖ [9, p. 23]. Because

unintended functions could conceivably have a negative

impact on system safety, detecting and eliminating them

increases in importance with higher software levels.

Structural coverage analysis is intended as a means to

increase confidence that the code that really exists in the

software has been reached, and thus any unintended

functionality has been exposed.

As noted at the beginning of this section, the motivating

question for the initial exploration was ―What claims are

made concerning test coverage analysis?‖ Claims identified

thus far include the following:

 Requirements-based test coverage analysis confirms that

the requirement-based tests satisfy the criteria of the

guidance.

 Structural coverage analysis confirms whether the

requirements-based tests covered the code to the extent

required by the software level.

 Structural coverage analysis identifies unintended

functions that exist in the software.

Refinements and additions to these claims are likely to be

made as the effort continues.

5 Future Work

This paper has described preliminary work towards building

an explicit assurance case for DO-178C / ED-12C. The next

steps to be followed include receiving feedback from readers

of the paper; articulating the top-level claim of the assurance

case; completing the determination of the assumptions

underlying this claim, and deciding how to handle each of

these assumptions in the assurance case; deciding what

notation(s) to use; completing the test coverage analysis

work; and determining whether to take a breadth-first or

depth-first approach to discovering sub-claims, arguments,

and evidence.

Once these steps are taken, the creation of a full assurance

case can commence. Readers interested in collaborating in

the endeavour are encouraged to contact the author.

References

[1] R. Bloomfield, P. Bishop. ―Safety and Assurance Cases:

Past, Present and Possible Future‖, Making Systems

Safer, C. Dale and T. Anderson (eds), Springer-Verlag,

pp. 51-67, (2010).

[2] P. Graydon, I. Habli, R. Hawkins, T. Kelly, and J. Knight.

―Arguing Conformance‖, IEEE Software, 29 (3), pp. 50-

57, (2012).

[3] GSN Community. GSN Community Standard Version 1,

(2011). [http://www.goalstructuringnotation.info/

documents/GSN_Standard.pdf] Visited 20 July 2012.

[4] R. Hawkins, T. Kelly, J. Knight, and P. Graydon. ―A New

Approach to Creating Clear Safety Arguments‖,

Advances in Systems Safety, C. Dale and T. Anderson

(eds), Springer-Verlag, pp. 3-23, (2011).

[5] C. M. Holloway. ―Safety Case Notations: Alternatives for

the Non-Graphically Inclined?‖ Proceedings of the 3
rd

IET International System Safety Conference, (2008).

[6] J. Knight. Fundamentals of Dependable Computing for

Software Engineers. CRC Press, (2012).

[7] RTCA / EUROCAE. ―Software Considerations in

Airborne Systems and Equipment Certification‖, DO-

178B/ED-12B (1992).

[8] RTCA / EUROCAE. ―Software Considerations in

Airborne Systems and Equipment Certification‖, DO-

178C/ED-12C, (2011).

[9] RTCA / EUROCAE. ―Supporting Information for DO-

178C [ED-12C] and DO-178A [ED-109A]‖, DO-

248C/ED-94C, (2011).

[10] RTCA / EUROCAE. ―Software Integrity Assurance

Considerations for Communication, Navigation,

Surveillance, and Air Traffic Management (CNS/ATM)

Systems‖, DO-278A/ED-109A, (2011).

[11] RTCA / EUROCAE. ―Software Tool Qualification

Considerations‖, DO-330/ED-215, (2011).

[12] RTCA / EUROCAE. ―Model-Based Development and

Verification Supplement to DO-178C [ED-12C] and

DO-178A [ED-109A]‖, DO-331/ED-216, (2011).

[13] RTCA / EUROCAE. ―Object-Oriented Technology and

Related Techniques Supplement to DO-178C [ED-12C]

and DO-178A [ED-109A]‖, DO-332/ED-217, (2011).

[14] RTCA / EUROCAE. ―Formal Methods Supplement to

DO-178C [ED-12C] and DO-178A [ED-109A]‖, DO-

333/ED-218, (2011).

[15] J. Rushby. ―New Challenges in Certification of Aircraft

Software‖, Proceedings of the 11
th

 International

Conference on Embedded Software (EMSOFT), pp. 211-

218, (2011).

[16] Society of Automotive Engineers. Guidelines for

Development of Civil Aircraft and Systems, SAE ARP

4754a, (2010).

6

[17] Society of Automotive Engineers. Guidelines and

Methods for Conducting the Safety Assessment Process

on Civil Airborne Systems and Equipement, SAE ARP

4761, (1996).

[18] I. Sommerville. Software Engineering. 9
th

 edition.

Addison-Wesley, (2011).

[19] T. Yuan, T. Kelly. ―Argument Schemes in Computer

System Safety Engineering‖, Informal Logic, 31 (2), pp.

89-109, (2011).

