
 

American Institute of Aeronautics and Astronautics 
 

 

1 

Integration of MATLAB Simulink
®
 Models with the Vertical 

Motion Simulator 

Emily K. Lewis
1
  

Science Applications International Corporation 

NASA Ames Research Center, Moffett Field, CA, 94035 

and 

Nghia D. Vuong
2
 

NASA Ames Research Center, Moffett Field, CA, 94035 

This paper describes the integration of MATLAB Simulink® models into the Vertical 

Motion Simulator (VMS) at NASA Ames Research Center. The VMS is a high-fidelity, large 

motion flight simulator that is capable of simulating a variety of aerospace vehicles. 

Integrating MATLAB Simulink models into the VMS needed to retain the development 

flexibility of the MATLAB environment and allow rapid deployment of model changes. The 

process developed at the VMS was used successfully in a number of recent simulation 

experiments. This accomplishment demonstrated that the model integrity was preserved, 

while working within the hard real-time run environment of the VMS architecture, and 

maintaining the unique flexibility of the VMS to meet diverse research requirements. 

Nomenclature 

CAMAC  = Computer Automated Measurement and Control 

DAVE-ML  = Dynamic Aerospace Vehicle Exchange Markup Language 

IG  = Image Generator 

I/O  = Input/Output 

OTW  = Out-The-Window 

PEP  = Project Engineer Panel 

SCRAMNet = Shared Common Random Access Memory Network 

SEP  = Simulation Engineer Panel 

VMS  = Vertical Motion Simulator 

I. Introduction 

HE Vertical Motion Simulator (VMS) at the NASA Ames Research Center, shown in Fig. 1, is a six-degree-of-

freedom flight simulator designed to provide realistic motion cues for high fidelity piloted simulation. Research 

on pilot motion cueing has shown that lateral and vertical motion cueing has a significant effect on pilot-vehicle 

performance and control activity.
1
 Furthermore, realistic motion cueing allows simulations to better predict pilot 

workload and in-flight performance.
2
 The high-fidelity, large motion capability at the VMS enables it to provide a 

realistic cueing environment where the resultant pilot cueing modalities and control techniques do not differ 

significantly from flight.
3
 This level of realism enables the VMS to deliver high quality research data that translates 

to flight.  

The VMS facility includes an adaptable simulation environment that can support a wide range of aeronautical 

research. A large number of actual and conceptual aircraft have been studied at the VMS over its 32-year history. 

These include various helicopters, Vertical/Short Take-Off and Landing and Conventional aircraft, tilt-rotors, 

airships, spacecraft, and the Space Shuttle. The VMS has played an important role in the development of several 

major programs which are currently flying, such as the V-22 tilt-rotor and Joint Strike Fighter, by providing critical 

                                                           
1
 Senior Simulation Engineer, NASA ARC SimLabs, Mail Stop 243-6, and AIAA Member. 

2
 Simulation System Engineer, NASA ARC SimLabs, Mail Stop 243-5, and AIAA Member. 

T 

AIAA Modeling and Simulation Technologies Conference
13 - 16 August 2012, Minneapolis, Minnesota

AIAA 2012-4797

Copyright © 2012 by the American Institute of Aeronautics and Astronautics, Inc. The U.S. Government has a royalty-free license to exercise all rights under the copyright claimed herein for Governmental purposes. All other rights are reserved by the copyright owner.



 

American Institute of Aeronautics and Astronautics 
 

 

2 

design data on aircraft handling qualities and flight control development. It was also used to train Space Shuttle 

Orbiter pilots on the approach, landing, and rollout phase of flight. 

The VMS host environment provides a robust and flexible set of development, debugging and execution tools 

which enables researchers and engineers to conduct research quickly and effectively. The adaptable simulation 

environment has been critical to the facility‟s ability to support a variety of aerospace vehicles (as mentioned 

previously) and  research topics, including handling qualities, guidance and displays, flight control design and 

evaluation, concept demonstration and feasibility studies, accident investigations, human pilot cueing research and 

simulation fidelity requirements. 

Over the operational history of the VMS, 

simulation vehicle modeling standards have 

evolved towards a graphical development 

environment where complex systems can be 

created and tested before actual hardware 

implementation. Many in the aerospace simulation 

industry have adopted MathWorks products such 

as MATLAB® and Simulink® to develop models.  

 Traditionally, aircraft math models simulated 

at the VMS were provided by the researcher in the 

form of block diagrams, algorithm descriptions, or 

sets of equations that would be programmed and 

tested by VMS engineers. With the advances in 

computing, researchers now have access to 

improved desktop vehicle model development and 

simulation tools. Routinely, they are now able to 

provide a mature model, often in MathWorks‟ 

Simulink, which can be implemented on the VMS. 

In these cases integrating the Simulink models 

directly into the VMS environment, instead of 

reprogramming the delivered math models, can 

eliminate programming errors and reduce the 

simulation implementation and validation time. 

The challenge faced by VMS engineers was to 

find a means of doing this efficiently and 

accurately.   

 As Simulink became more popular for model 

development, the demand for Simulink models to 

be integrated with simulation facilities with an 

existing and mature architecture increased. For 

example, at the Naval Air Systems Command at 

Patuxent River, the legacy hi-fidelity aircraft 

simulation environment, CASTLE (Controls 

Analysis and Simulation Test Loop Environment), 

was integrated with Simulink in order to perform 

flight control system development work.
4
 In that 

case the real-time aircraft simulation set-up and 

execution control was transferred to the MATLAB workspace. The NASA Langley Research Center simulation 

engineers took a different approach for the SAREC-ASV (Simulink–Based Simulation Architecture for Evaluating 

Controls for Aerospace Vehicles) and the B-737 Linear Autoland Model efforts.
5,6

 Their method was to program and 

run the entire simulation in MATLAB in order to provide a desktop simulation capability of sufficient fidelity to 

effectively derive and evaluate aircraft control laws and control system components. While valuable for 

development work, this scheme is not appropriate for a piloted simulation. Several real-time and non-real-time 

applications in academia and industry use Simulink‟s target integration mechanism for off-the-shelf simulation 

platforms.
7-9

 None of these approaches, however, were suitable for the VMS due to its stringent or “hard real-time” 

requirements and the necessity to simulate diverse vehicles. “Hard real-time” means that the execution of all 

software computations must be completed within a specific frame time. A more suitable approach for the VMS is 

the MOSAIC (Model-Oriented Software Automated Interface Converter) developed at The Netherlands‟ National 

 
Figure 1. Cut Away View of Vertical Motion Simulator 

 



 

American Institute of Aeronautics and Astronautics 
 

 

3 

Aerospace Laboratory (NLR), which automates the conversion from MATLAB‟s Real-Time Workshop® (RTW) 

code to a predefined Application Programming Interface.
10

  MOSAIC was used successfully in several aerospace 

projects in Europe such as the European Space Agency‟s Automated Transfer Vehicle project.
11

  Though this 

approach was suitable for the VMS, it would have required substantial modification to work within the VMS‟s real-

time operating environment. The VMS system has been refined over decades of operations. It includes sophisticated 

debugging and development tools, and other specialized functions, which give it the flexibility needed to meet 

current and future research requirements. 

 A method to integrate Simulink into the VMS was developed and was successfully implemented for a number of 

recent experiments. This paper will describe this method and its application. First, the paper will provide an 

overview of the VMS, including the hardware, software, and communication systems. Subsequent sections will 

describe different projects that have utilized Simulink and will provide a detailed discussion of the process to 

integrate Simulink models as well as challenges overcome and lessons learned.  

 

II. Description of the Vertical Motion Simulator  

The VMS is a one-of-a-kind research simulation system, comprised of many interchangeable components that 

can be tailored to simulate any aerospace vehicle and meet the specific needs of most NASA programs. Housed in a 

ten-story tower, with a 60-foot vertical displacement and 40-foot lateral displacement, the VMS, shown in Fig. 1, 

offers the largest motion range
1,3

 of any simulator in the world. In addition, a set of five interchangeable and 

reconfigurable cabs, a variety of out-the-window 

(OTW) visual scenes, an accurate control force-feel 

system, and flexible flight instrument and engineering 

displays allows almost any aerospace vehicle to be 

simulated on the VMS. 

A. Motion System 

The most striking feature of the VMS, and the 

characteristic for which it was named, is its large 

vertical motion capability, which enables the VMS to 

offer high fidelity motion.
12

 The cockpit sits on a 70 

foot long platform which spans the VMS tower and 

travels vertically  30 feet. This platform is supported 

by two columns that extend into 75-foot deep shafts. 

The columns are pressurized with nitrogen to 

neutralize the weight to provide smooth vertical 

motion. On top of the platform is a moving carriage 

which translates along the platform and provides a 

horizontal displacement of  20 feet. A sled sits on the 

carriage and provides  4 feet of the third translational 

degree of freedom.  

The short translational and three rotational degrees-

of-freedom are provided by a high performance four-

axis motion generator with four large telescoping 

actuators. Fig. 2 illustrates the six-degrees-of-freedom 

mechanisms. Table 1 describes some of the motion 

system performance limits. These large limits allow 

the cab to sustain movements for a relatively long 

period of time, a characteristic that enables the VMS to 

reproduce realistic cues during critical phases of flight.  

B. Pilot Cockpit Hardware 

The flexible and dynamic research laboratory is achieved by way of a wide range of adaptable hardware 

components which can be put together in various ways to accurately represent most any vehicle, real or notional. 

Five different interchangeable cabs are available which are used to represent the cockpit of the simulated vehicle. 

Table 1. Vertical Motion Simulator System 

Performance Limits 

 
 

 
Figure 2. Vertical Motion Simulator Cab in the 

Tower 



 

American Institute of Aeronautics and Astronautics 
 

 

4 

The cabs are outfitted with appropriate pilot control inceptors, out-the-window (OTW) visual scene displays, and 

flight instruments. Fig. 3 shows an example cab that was used for a tilt-rotor experiment.  

A large collection of control inceptors (e.g. center stick, wheel and column, pedals) are available. The McFadden 

Force Loader system is used to deliver versatile, accurate, and realistic control cues to the pilot. With this system, 

control force feel characteristics - such as position trim, breakout, friction and non-linear gradient – can be easily 

tailored to meet the needs of a variety of research programs. In addition, a variety of passive controls are available 

for the cab, such as a throttle quadrant, trim hat, flap and gear handles, thumb wheels, buttons and lights.  

C. Computer Hardware 

 The VMS computer system architecture is comprised of a host computer, on which the aircraft math model 

executes, along with a number of other separate processors. The host computer, a 1GHz Hewlett Packard Alpha 

running Open Virtual Memory System (OpenVMS), provides the executive and real-time Input/Output (I/O) control 

functions, the interface for executing and debugging models, and control of the other processors (visual, motion, 

etc). In the near future, the host and operating system will be upgraded to a Linux based system. Other processors 

include computers that generate images to emulate the outside word, graphics workstations that create the cockpit 

flight instruments and lab engineering displays, a sound generator, and other processors or hardware that may be 

included in the real-time simulation as needed for a simulation study. 

Three Rockwell Collins multi-channel Image Generators (IG) are available to produce the cab OTW view. Each 

scene uses a database that contains the relevant characteristics of the geographical location and a high-resolution 

inset of the specific area of interest. In addition, three-dimensional moving and/or stationary objects can be included 

to enhance visual cuing. Moreover, most cabs incorporate a collimated visual scene such that the view is focused at 

infinity which greatly enhances the sense of depth and realism. The IGs can also be used to drive a third person 

perspective, complete with moveable control surfaces, for research observation. 

 Dual core processor Hewlett Packard workstation graphic engines are used to drive the cab flight instruments 

and engineering displays. These can include Head-Up Displays and Head-Down Displays (HDDs) such as Primary 

Flight Displays (PFDs), Navigation, and Engine displays. Standard aircraft cockpit instruments are available and can 

be used as-is or modified for a particular experiment. Lab engineering displays include real-time variable 

monitoring, electronic strip charts, and control activity or pilot performance displays. These are often created 

specifically for a particular study. 

 
Figure 3. Example Two-Seat Cab with Tilt-Rotor Controls and Displays 



 

American Institute of Aeronautics and Astronautics 
 

 

5 

An Advanced Simulation Technology Inc (ASTi) sound generation system is used to create the aircraft flight 

noise. Sound is heard through speakers and headsets in the cab and lab. A typical sound model consists of air noise, 

engine whine, rotor, and gear sounds. It can also comprise call outs, warning tones, or special aural cuing sounds. 

 Each of these components are shown in the system diagram in Fig. 5, along with the communication connections 

between the components, which are discussed in the next subsection. In this figure and for the purpose of this paper, 

a “driver” is an algorithm which is programmed to control elements of a device or graphics executable. 

D. Communication 

 

1. Communication Devices 

Communication between the host and attached computational processors is handled over a real-time network 

using Ethernet protocols.
14

 An in-house “raw Ethernet” protocol is used for cab flight instruments, lab engineering 

displays, sound, and auxiliary processing. 

A Computer Automated Measurement and Control (CAMAC) real-time data acquisition system is used to 

provide an interface between the cockpit passive controls and the host computer. The CAMAC is an industry 

standard high-performance data acquisition interface by Kinetic Systems. It supports the various input/output 

requirements of a simulation. 

Examples of CAMAC driven 

I/O include the throttle 

quadrant, trim hat, thumb 

wheel, flap and gear handles, 

buttons, and indicator lights 

in the cab; and the strip 

charts, Simulation Engineer 

Panel (SEP), and Project 

Engineer Panel (PEP) 

buttons in the lab. The SEP 

and PEP are two panels of 

push-button switches and 

indicator lights that can be 

customized to set-up, 

interact with, and monitor 

the simulations.  

 A Shared Common 

Random Access Memory 

Network (SCRAMNet) is 

used for communication 

betweem the host computer 

and the Motion Control Unit, 

which provides motion 

system commands and 

accelerometer sensor 

feedback; the pilot control 

loaders; and other functions 

as needed. The SCRAMNet 

is a reflective memory ring, 

a network of computers (the 

host plus other devices), that 

share a common memory. 

These computers are 

connected by fiber optic 

cables and use special hardware, developed by Systran, to map this shared memory into the user memory space of 

each computer system. All computers on the SCRAMNet share the same memory.  

Several devices are available for data collection. A high capacity removable disk is used to record time history 

data. A list is created with all variables to be recorded. Values for these variables can be recorded every frame to the 

data disk. This time history data can be converted to a variety of formats or put onto an external drive immediately 

 
Figure 5. Vertical Motion Simulator System Diagram 



 

American Institute of Aeronautics and Astronautics 
 

 

6 

after an evaluation run. Other data collection options include two DVD recorders which can be used to make audio 

and visual recordings of any display, and a high-resolution digital video recorder can be used to make quality digital 

recordings. 

 
2. List Driven Input and Output  

The VMS communication system uses special runtime configurable I/O lists to send and receive data between 

the host and all the devices mentioned above. This arrangement enables fast and easy I/O changes to any simulation 

component while running by 

eliminating the need to 

suspend, re-compile, or relink 

any code. This flexibility is 

made possible because of the 

symbol table, a list of global 

variables, which associates a 

variable (symbol) with its 

address, names, and value. 

All necessary variables are 

static and their addresses are 

known all the time. Thus any 

variable in the symbol table 

can be added to an I/O list at 

any time during a simulation 

experiment in a matter of 

moments. The current VMS 

operating system is unable to 

handle C code structure 

members or variables, so any 

symbol on an I/O list must be a  FORTRAN variable. Moreover, any number of variables may be defined in a script 

file and brought into an executing simulation at one time. This offers the engineers the ability to make rapid 

configuration changes and accelerates development work. The list driven I/O concept is depicted in Fig. 6. Each 

arrow shown in this diagram represents a set of I/O lists which arrange the transfer of data between the host and each 

simulation component. 

E. Software  

 

Like the hardware, the VMS software has been designed to support a flexible and rapid development capability 

while maintaining an accurate and high-fidelity environment for simulation experiments. This is achieved by way of 

a set of software components, the backbone of which is the in-house developed MicroTau real-time environment. 

MicroTau provides effective tools for developing and testing aircraft simulation models and executing these models 

in a hard real-time piloted experiment. It controls the other simulation processors, performs the aircraft model 

calculations and supplies the user interface to the real-time job.
13

 Available interactions include an on-line real-time 

debugger, an operational window in which engineers can monitor variables and simulation execution, and the 

facility to deposit values into any number of variables either interactively or by loading script files. This system 

makes changing configurations fast, easy, and repeatable during experiment operations. 

Another important component is a software library which contains various modules that perform model-

independent functions such as calculating the aircraft equations of motion, driving the cockpit visual scene, 

controlling the motion system and recording electronic data. In addition, this library also includes routines, such as a 

gear model, aircraft trimmer, dynamic check generator and a variety of filters, which are available to use and modify 

as needed for any particular experiment. Typically, a simulation will comprise the model-independent library 

routines as well as other modules specific to the vehicle, such as the interface between the cab and model, the 

control system logic, the aircraft math model and the software to drive the cockpit and lab displays. Vehicle model 

software can be developed at the VMS or by the visiting researchers.   

 
 

Figure 6. Symbol Table Interface Diagram 



 

American Institute of Aeronautics and Astronautics 
 

 

7 

Models, external processors, and software packages of common industry standard types can be integrated into 

the VMS system. Although the VMS library and legacy code is written in FORTRAN, all major languages and 

software environments are supported including, but not limited to, C/C++, FORTRAN, and Ada. Any modules in 

the area marked vehicle specific in the VMS Software Structure diagram shown in Fig. 7 can be integrated into the 

VMS. 

 

III. Research Requirements that have Driven Simulink Integration 

Integration of MATLAB Simulink models is largely driven by research model requirements. Simulink models 

may be developed at the VMS, accepted directly from the visiting research team, or as a software package from third 

party sources. The diversity of the model origins is indicative of the differences in their characteristics. Models may 

include external code, m-file code, lookup tables, and specialized Simulink blocks. For most blocks, Simulink is 

able to directly convert core MATLAB functions into RTW generated code; however, external code resources must 

be handled through MATLAB‟s S-function mechanism. In addition to the variation in code sources, Simulink 

models also have a variety of run modes. The VMS simulator architecture is a hard real-time, continuous, hold, and 

run system; therefore, the run and hold mode logic must be introduced during the conversion process. The 

integration procedure must be flexible in order to cater to a variety of model requirements while maintaining clear 

accounting of the conversion process in order to ensure maintenance of model integrity. 

The Simulink models that have been integrated at the VMS range in size and complexity. They can be organized 

into three general categories: flight instrument drivers, advanced control laws, and complete aircraft models. One 

example of the former is a guidance model, programmed in Simulink, which calculated pursuit guidance and flight 

director commands, that was used to drive new symbols on a PFD during an aircraft handling qualities experiment.
15 

Another example from a recent experiment utilized a complete moving map HDD with fuel contour lines that was 

driven from an integrated Simulink model. Several helicopter experiments over the past years have studied modern 

or advanced control laws which were developed in Simulink. One project that studied the handling qualities of 

different classes of rotorcraft utilized five different Simulink models, each of which contained a full helicopter 

simulation. A notable recent Simulink integration effort at the VMS comprised a series of experiments that studied 

the handling qualities of a notional large tilt-rotor. For these tilt-rotor simulations, the entire aircraft model including 

fully-moveable nacelles, a rotorcraft turbulence model and a dynamic check capability, was provided in Simulink.
16

 

The applications of Simulink are diverse, and this reality presents a challenge for existing integration standards. 

 

 
Figure 7. Vertical Motion Simulator Software Structure 



 

American Institute of Aeronautics and Astronautics 
 

 

8 

IV. Process for Integrating Simulink Models with the VMS 

The process for integrating Simulink models into the VMS host environment is designed to achieve several goals. 

The integration must maintain the integrity of the functions provided by the model. The dynamic behavior of the 

model must pass a series of tests to ensure this reliability. The process must be robust enough to afford researchers 

the ability to perform development in Simulink while retaining the capacity to monitor, modify and record all 

desired variables during the experiment. In addition to preserving model integrity and access to needed data, the 

process must also meet facility expectations for rapid deployment of new changes to the experiment. 

A process was developed to integrate Simulink models into VMS simulations efficiently while allowing 

researchers the flexibility of continuing development work in the MATLAB environment. This procedure utilizes 

Real Time Workshop, a MathWorks utility that will generate C code from Simulink block diagrams. A number of 

challenges were solved and improvements made to the process as engineers became more familiar with the 

MathWorks products. Some of the lessons learned will also be discussed. The general steps of this procedure are as 

follows and are depicted in Fig. 8, Simulation Itegration Process. 

 

1) Prepare the Simulink Model for integration into the VMS simulation environment.  

2) Generate C code using RTW. 

3) Compile the RTW code and build the model library. 

4) Create RTW variable linkage by mapping the C structure variables into FORTRAN common blocks. 

5) Create an interface wrapper to call the RTW code and manage the I/O 

6) Link the RTW code library with other simulation modules to build an executable image 

7) Test the model to verify the integrity of the integrated code.  

A. Simulink Model Preparation 

The first step of the Simulink integration process is to prepare the model for code generation. On a desktop 

PC,the Simulink model is loaded into MATLAB. It is initialized, and the model data is loaded into the MATLAB 

Workspace, usually using script files to automate the process. The Workspace is the set of variables that exist in 

memory during a MATLAB session. A primary consideration during the model preparation step is to ensure that all 

needed inputs, outputs and parameters are accessible by the host symbol table in the generated code. RTW partitions 

model variables into a number of global data structures for this use.
17

 The global data structures the VMS integration 

utilizes are listed below. 

 

  
Figure 8. Simulink Integration Process 



 

American Institute of Aeronautics and Astronautics 
 

 

9 

 The model_U structure, which contains external inputs via the top-level Simulink Inport blocks and is 

used to send required inputs into the model from the host computer. 

 The model_Y structure, which contains external outputs via the top-level Outport blocks and is used by 

the host to obtain the model outputs. 

 The model_P structure, which contains block parameters that are used for a variety of  purposes such as 

gains, scale factors and flags. 

 

For a variable to be included in the global input or output data structures, it must be in the top-level block as an 

input port or output port. To ensure that all required inputs and outputs are included in the generated code, a number 

of signals must often be pulled to the top-level block and the ports correctly named. Access to inputs, outputs and 

named signals in code generated from Simulink models seems to be a common problem
6,7,10 

and as such will be 

discussed in some detail. 

Input structure members take the name of the input port signal. Output port names, however, must be explicitly 

defined, using the “show name” option in the output port format pull-down, to provide the output structure member 

with the desired name. Otherwise, the output structure members will take generic Simulink symbolic names. By 

default, block parameters (such as gains and scale factors) are not tunable and are stored in the model_P structure 

with Simulink symbolic names. Sometimes this is not a problem, and access to the parameters is not needed. 

However, depending on the model being integrated, the ability to see and modify some block parameters is required. 

This capability is made available through the „Simulation Configuration Parameters‟ dialogue box.
18

 

Under the „Optimization Signals and Parameters‟ option in the „Simulation Configuration Parameters‟ pane, the 

„Inline Parameters‟ option must be enabled. By default, this option is off which results in parameters being packed 

into the model_P structure with generic names and non-adjustable values in the generated code. When „Inline 

Parameters‟ is enabled, parameters appear as constants in the generated code. To make the desired parameters 

tunable, they must individually be removed from inlining and given a storage class. This is done in the „Model 

Parameter Configuration‟ pane.  

Within the „Model Parameter Configuration‟ dialogue box, all variables that exist in the MATLAB workspace 

are loaded. The list is used to select the names of the workspace variables that need to be adjustable. To make a 

variable adjustable, it must be selected and added to the table labeled “Global (tunable) parameters.” When a 

parameter is selected to be global (tunable) the user can control whether or not it is included in the model_P 

structure by declaring the storage class. The default Simulink storage class for the global parameters is 

„SimulinkGlobal,‟ which will leave the tunable parameter in the model_P structure. If the „ExportedGlobal‟ storage 

class is selected the parameter is exported as a global variable independent of the Simulink data structures. The 

„ExportedGlobal‟ storage class is typically chosen for any variable which needs to be modified, recorded or used in 

any way.  

In addition to declaring the necessary inputs, outputs, and parameters, a few other steps are required to configure 

the model for code generation. These are all done in the „Simulation Configuration Parameters‟ box. First, the 

Solver is set to Fixed-Step type. As mentioned previously, the VMS runs in hard real-time, thus code execution is 

constrained such that all computations must be completed within a specific frame time. The fixed-step size solver is 

necessary to work within the hard real-time structure in order to guarantee the completion of code execution within 

that frame time. During one experiment, it was found that, even though the RTW generated code was created using a 

fixed step size, some Simulink blocks nevertheless had an incorrect frame time. This happened when the block 

sample time was hard coded instead of being set to inherit. For a hard real-time simulation, all blocks with a non-

inherited frame time must be identified and corrected. 

Next, the Generic Real-time (GRT) Target and the C language are selected. RTW has several different target 

configuration formats available, each of which are suited to different applications. GRT is the RTW target 

configuration that uses the real-time code format and supports external mode communication and static memory 

allocation in order to create custom rapid prototyping.
17

 It can execute in hard real-time when it is explicitly 

connected to a real-time clock. Last, since the RTW code is compiled on another computer, the Generate Code Only 

option is selected.  

Often there are additional changes that must be made to the Simulink diagrams for the generated code to work 

within the VMS system. Variable initialization is sometimes a challenge, as it is for other facilities.
11

 One reason this 

happens is that, in order to properly trim an aircraft and initialize subsystems, filters often need non-zero initial 

values. Simulink does not provide a means to set an initial value with their library transfer functions. To resolve this, 

the transfer functions must be reprogrammed from scratch using integrators and with an initial value input built in. 

As mentioned previously, aircraft simulations must be trimmed and all models must be correctly initialized. 

However, Simulink models may not have compatible trimming methods or none may exist at all. Models also may 



 

American Institute of Aeronautics and Astronautics 
 

 

10 

contain conflicting or incompatible handling control, execution schemes, and reset mechanisms. With one 

simulation the trimming problem was solved in the following manner. The Simulink model was modified to include 

a trim flag that would turn off some sections during the trim and would capture output values as they converged. To 

trim the Simulink model on the host computer, numerous variables required initial values, specific to each trim 

condition. Trim files that included these parameters were generated using an aircraft trimmer programmed in 

MATLAB, and then converted to a script file format that could be loaded on the host during real-time operation. 

Though less flexible than a real-time trimmer, this method nevertheless provided a stable trim for all initial 

conditions flown during the experiment. A real-time trimmer already available in the existing VMS software was 

modified to take account of all the necessary trim variables and was included in the build. Although this trimmer 

worked for many conditions, it took several minutes and did not always converge.  

B. Real-Time-Shop Code Generation 

 The second step of the Simulink integration process is to use RTW to generate C code. This procedure is 

initiated in the Simulink model window by invoking the code generator. The generation progression can be 

monitored in the MATLAB Command Window. All generated files are listed as they are written. At the end of this 

process, a final statement is shown stating that the procedure has been successfully completed. If any errors occur 

during the code generation, they must be resolved before the generated code can be used.  

 RTW generates a set of source, header, and other files. Some are model specific and some are common RTW 

utility files. The model source comprises an initialize function, a terminate function, a step or update function and 

scheduling code.
19

 The generated files are transferred to the host computer. Additional source and header files may 

be needed which are not supplied by the RTW generation. For instance, a necessary top-level file that calls the 

model functions is not generated. The additional modules are identified and copied to the host as well. All are then 

integrated into the VMS simulation environment during the subsequent steps. 

C. Generated Code Compilation 

The third step of the Simulink integration process is to compile the RTW code and build the model library. This 

library consists of the RTW generated model specific files, RTW supplied generic routines, and other required 

MATLAB modules. One important routine is a top-level main-type file that can be used to call the model functions. 

A modified version of the MathWorks provided GRT target main program, grt_main.c, is used to provide the entry 

points into the RTW generated code. The same routine can be used for all Simulink models. 

Makefiles are created to compile these routines on the hosts and link them into a model library. A makefile is a 

command file in which a group of routines to be compiled is listed. It also organizes the compiler switches, invokes 

the compiler and creates the libraries. RTW generates a text file which  lists the values of some compiler specified 

defines, such as the exact model name and the number of continuous states, which must be set correctly. These 

definitions are handled through a series of compile switches set in the makefile. 

 RTW often creates long variable names, an occurrence which causes difficulties for the VMS as well as other 

simulation facilities.
11

 On the Alphas, names longer than 31 characters are truncated. This often results in the 

variable names no longer being unique, a condition that causes a link-time error. A compile-time switch is added to 

the makefile that allows  the names to remain unique while still being truncated. Finally, a compile-time switch in 

the makefiles is also used as part of the global variable mapping scheme, which will be discussed next.   

D. Global Variable Mapping 

The fourth step of the Simulink integration process is to map the C structure variables into FORTRAN common 

blocks. As discussed above, RTW generated C code data is partitioned into global structures that have all the root 

level inputs and outputs, as well as exported global variables (such as gains, scales, and flags). The generated code 

allocates storage for each data structure.
19

 Also discussed above, in the VMS simulation system, in order to have 

access to a variable for experiment set-up and monitoring, or for use on an I/O transfer list (e.g., simulator cab and 

display communication, and data collection), it must have a memory location in the symbol table and be a 

FORTRAN variable. Thus, a scheme was developed to map each C structure member to a FORTRAN common 

block element, and each C variable with an exported global storage class designation to a single element FORTRAN 

common block. In the RTW model header, the top level structures and exported parameters are automatically 

declared global using the external keyword which specifies that they will be defined elsewhere, thus allowing an 

external linkage. Fig. 9 shows a snippet of a RTW generated header in which the top level structures and exported 

global parameters are declared. In the makefile, discussed in subsection C above, a compile switch is used which 

makes the global definitions and creates a linkage between the FORTRAN common block and global C external 



 

American Institute of Aeronautics and Astronautics 
 

 

11 

structures. Thus, the RTW C global external structure members and FORTAN common block variables of the same 

name are equivalent and exist in the same memory location.  

The simple compile time switch is now used to create the external variable linkage in lieu of a previous method 

which required a new header to be included in every generated source file, a task which was cumbersome and also 

had to be repeated for each iteration of code generation. This earlier method utilized the C code #PRAGMA 

statement to map any “external model” to a common block. Since the compile time switch is easy to implement and 

only set once, it is deemed the preferred technique. 

The second half of the process to generate the C/FORTRAN linkage is the creation of a FORTRAN include file 

in which the common block variable definitions are made. The structure and exported global parameter declarations 

in the generated model header file are utilized for this, as well as a tool developed for this purpose, which is 

discussed below. Each RTW variable data type is also mapped to an equivalent FORTRAN data type, and the type 

declarations are put into the FORTRAN include file as well. This include file is used in the interface wrapper 

routine, discussed in subsection E below, as well as in all other modules that need access to the RTW C variables. A 

snippet of the declarations in the header file and the corresponding common block definitions in the include file are 

shown in Figs. 9 above and 10 below.   

In this manner, two RTW structures, the external inputs and external outputs, are mapped into two similarly 

named FORTRAN common blocks. In addition, any number of exported global parameters – variables to which we 

need access but which were not included in the other structures – are mapped to individual FORTRAN common 

blocks. Sometimes, in addition to the model inputs, outputs, and exported global parameters, the constant parameters 

and block data structures are also needed and are then mapped to common blocks in the same way.  

 In the RTW Generated header file My_Model.h: 

/* External inputs (root inport signals with auto storage) */ 

extern ExternalInputs_ My_Model _U; 

 

/* External outputs (root outports fed by signals with auto storage) */ 

extern ExternalOutputs_ My_Model _Y; 

 

/ * Exported Global Parameters 

extern real_T Adjustable_Gain1;                     /* Variable: Adjustable_Gain1 

extern real_T Adjustable_Scale1;                    /* Variable: Adjustable_Scale1 

  
Figure 9. Example Generated Model Header-File Declarations 

 In the corresponding FORTRAN include file: 

For root inport signals with auto storage in ExternalInputs_My_Model structure: 

   REAL (KIND=REAL_T) :: input_var1 

   REAL (KIND=REAL_T) :: input_var2 

 

   COMMON / My_Model_U / input_var1                      

   COMMON / My_Model_U / input_var2   

 

For root outports fed by signals with auto storage in ExternalOutputs_My_Model structure: 

   REAL (KIND=REAL_T) :: output_var1 

   REAL (KIND=REAL_T) :: output_var2 

 

   COMMON / My_Model _Y / output_var1 

   COMMON / My_Model _Y / output_var2 

 

For Exported Global Parameters: 

  REAL (KIND=REAL_T) :: Adjustable_Gain1  

  COMMON / Adjustable_Gain1 / Adjustable_Gain1               

 

  REAL (KIND=REAL_T) :: Adjustable_Scale1  

  COMMON / Adjustable_Scale1 / Adjustable_Scale1 

   
Figure 10. Example Common Block Definitions 



 

American Institute of Aeronautics and Astronautics 
 

 

12 

The tool used in the variable mapping process (mentioned above) is a series of language parsers that have been 

developed to expedite and automate the introduction of RTW C code to the host environment. The parser is designed 

to convert from any source code to any target code by taking advantage of the repetitive structure of computer code. 

Computer code is largely defined by unique identifiers that designate the start and end point of different regions. 

Parsers can take advantage of these topographical features in computer code to map functional regions of one code 

into another. The tool is a set of functions used to manipulate language such as: find-and-replace, find-string, find-

section, find-and-cut, and find-and-merge. These functions act as the basic building blocks that can be assembled 

using scripts and setting files in order to convert from one language to another automatically. Specialized rules and 

scripts for the language parsers are present to create the VMS compatible interface include files from the RTW 

generated modules. Once all variables are converted to compatible language sharing blocks, the source code can be 

combined using an interface. 

E. RTW Interface Wrapper 

The fifth step of the Simulink integration process is to create the interface wrapper. This interface has three parts: 

an executive routine to make the function calls that initialize and execute the RTW generated model appropriately, a 

module to prepare the inputs, and a module to handle the outputs. As discussed above in subsection B, the RTW 

generated model source comprises an initialize function, a terminate function, and a step or update function,
19

 but 

not a calling routine. Thus a “main” module, which calls the RTW generated functions, is added to the model 

library. It is called from the interface wrapper, once to initialize the model, and in every frame while it is running. 

The interface wrapper input module modifies existing VMS variables, or creates new signals as needed, to provide 

all necessary model inputs. Likewise, the interface wrapper output module accepts and modifies, as needed, the 

model outputs in order to provide any required hooks into the real-time system software (e.g. to drive the motion, 

visuals, or displays). Although the framework and much of the logic is the same for each Simulink simulation, the 

interface wrapper is specific to the particular model being integrated.  

As was previously mentioned, variable initialization is sometime a challenge. Another reason this happens is that 

the RTW model initialization function zeros out all the inputs when it is called. To get around this, a second set of 

all the inputs are created in the wrapper code into which the desired initial values are stored. These values are then 

loaded back into the actual input variables after the initialization call has been completed.   

F. Executable Image 

 The sixth step of the Simulink integration process is to create the simulation executable load. The RTW model 

library and data header are linked with the interface wrapper and other VMS module object files and libraries to 

create the executable image. This is done on the host by creating a top-level build file that lists the names and 

locations of all required modules and then invoking a MicroTau application load building procedure. The build 

procedure links the listed libraries, object files and data tables with the system libraries to create an executable 

image.
13

  

G. Test and Verification 

 The seventh and final step of the Simulink integration process is to verify that the Simulink model was properly 

integrated and that no errors were introduced in the process. The simulation is tested using static and dynamic 

checks. For the static checks, the aircraft is trimmed in various conditions and the model outputs are compared to 

those in Simulink for the same configuration. For dynamic checks, time history data appropriate to the model 

integrated is recorded and compared to the corresponding data collected in Simulink and/or to data delivered by the 

researchers.  

As experienced by other facilities, upgrades to MATLAB and Simulink versions require changes to the 

integration process.
5
 New releases have new features which result in changes to both the Simulink diagrams as well 

as the interface procedure. Moreover, it was discovered that all who are involved in a project – model developers 

and simulation engineers - must have the same version of MATLAB, Simulink and Real-Time Workshop. Code 

from newer versions is incompatible with that from older versions. Reconciling regular changes and updates to a 

multitude of diverging versions is a difficult challenge across industry. On occasion, the VMS facility has had to 

obtain older versions of MATLAB and Simulink in order to effectively integrate delivered models. 

V. Embedding VMS Code into Simulink 

Several mechanisms were developed to integrate Simulink models, and they have been modified to adhere to 

research and host requirements. RTW can generate C code for all standard Simulink blocks, and is described in 



 

American Institute of Aeronautics and Astronautics 
 

 

13 

detail above. This mechanism accounts for the bulk of Simulink code compiled on the host. Sometimes, however, 

Simulink blocks may themselves reference external code blocks that may not be native to the MATLAB 

environment. In these cases, it is necessary to first convert the blocks into an S-function that can be referenced by 

Simulink during the link stage. MATLAB S-functions are Simulink blocks written in a computer language.  The S-

function types are described using the base language, e.g. C, C++, and Fortran, as well as the level of feature support 

desired.  This paper focuses on Level 2 S-function in C. The Level 2 S-function defines the number of in and out 

ports as well as the initialization order of each data port, and it is a superset of all S-function features. Customization 

of this interface is largely responsible for conforming all model symbols with VMS host variables by making them 

available to the host after RTW converts the model to C code using the GRT Target. The VMS host environment 

uses a custom S-function template and conversion procedure to tailor the interface components as appropriate. This 

procedure is set once during simulation development and can be reused during trials to adapt changes. The 

repeatability of the process is key to operational efficiency and rapid transition between model changes. 

The parser scripts from the RTW integration tool inherit the experience gained from a long history of 

collaborative simulation at the VMS facility. The parser tool package is related to code procedures used to parse 

DAVE-ML (Dynamic Aerospace Vehicle Exchange Markup Language) source, based on XML standards, to the 

VMS host environment.
20

 DAVE-ML is a model exchange standard that aims to facilitate model exchange between 

different facilities. The VMS regularly encounters situations that require language-to-language conversions; 

therefore, software tools must be flexible to any language, repeatable, automatic, and contain self-check 

mechanisms. At present, the tools do not contain self-check and validation methods, which is one of several aspects 

still being developed for compliance with DAVE-ML standards. As such, check cases and procedures are in place to 

validate model behavior after conversion. The parser functions are currently sufficient and acceptable for Simulink 

conversion. 

The third tool is a radical reversal of the conversion process. By providing a native Simulink port of existing 

VMS host capabilities, research teams can develop models with VMS components such as the physics equations of 

motion. The block is a custom function wrapper that can be selected and placed into existing Simulink diagrams 

such as any other native block. Input and output ports automatically populate, allowing predictable interface 

connections to develop within the model. The model gains the ability to simulate exact functionality provided by the 

VMS because the function block encapsulate the compiled version of identical code object in the VMS. This 

capability is currently provided upon request as an effort to further extend the usefulness of NASA capabilities to 

the research community. Modules developed for use at the VMS are time-tested tools that have been proven 

valuable and effective for use in many air and space vehicle simulations. In addition to the benefit to the research 

model, the native Simulink port is able to build directly from Simulink RTW as a generic target. The ports translate 

directly into VMS host ports with the proper symbolic names and allow the generated C code to integrate directly 

into the existing VMS host environment; therefore, a significant amount of time is saved by skipping steps such as 

ensuring port alignment and variable interfacing. 

The Simulink port wrapper template can be extended to encapsulate model code. The template and procedure 

can wrap aerodynamic lookup tables, and was used to convert an F-16 reference model
21,22

 during the development 

of a new simulation architecture at the VMS facility for the Operational Based Vision Assessment (OBVA)
23

 

simulator, a joint venture between NASA Ames and the U.S. Air Force. The wrapper allowed for rapid, automated, 

and repeatable introduction and interface of aircraft flight characteristics in hours, a procedure that may take weeks 

traditionally. The OBVA simulator is a good candidate for the wrapper because it operates with MATLAB Simulink 

as the real-time data analysis interface. The system is MATLAB centric and all aircraft control, physics, and 

aerodynamic models reside in Simulink. Native Simulink port modules add to model utility and reduce procedural 

complexity during integration with the VMS host environment. 

VI. Conclusions 

 

The VMS, with its realistic motion cueing and flexible simulation operating environment, is an ideal platform for 

simulating real and notional vehicles. Feedback from the research community indicated a demand for seamlessly 

integrating models developed in graphical environments, such as MATLAB/Simulink, while maintaining the ability 

to perform rapid data processing and ensuring data integrity. In response to this demand, the VMS facility developed 

a process to quickly incorporate Simulink models into the VMS simulation environment. Real Time Workshop is 

used to generate C code from the Simulink model on a desktop PC. The generated files are then transferred to the 

host computer, and compiled. An interface wrapper is created which includes a mechanism to link the Simulink 

variables to the host system. The RTW generated code is included in an executable image with other VMS software. 



 

American Institute of Aeronautics and Astronautics 
 

 

14 

Once the integrity of the integration is thoroughly verified, the Simulink model is fully integrated into the VMS 

simulation environment.  

This procedure to integrate Simulink models into the VMS has been used successfully for several piloted 

simulation experiments. The VMS‟s flexible real-time software infrastructure ensures that current and future 

changes to Simulink can be accommodated in a fast and efficient manner. Familiarity with the MathWorks tools and 

an ability to quickly integrate Simulink models into the VMS has greatly enhanced the ability to rapidly develop, 

integrate, and simulate vehicle models as required by research programs. This capacity to integrate Simulink models 

directly into the VMS real-time simulation structure has improved efficiency and reduced potential errors, while 

allowing researchers to retain the development flexibility of the MATLAB environment. 

 



 

American Institute of Aeronautics and Astronautics 
 

 

15 

Acknowledgments 

The authors wish to thank Bosco Dias, Gordon Hardy, and Ben Lawrence for their contributions and expertise.  

References 
1Danek, G. L., “Vertical Motion Simulator Familiarization Guide”, NASA TM-103923, 1993. 

 
2Aponso, B. L., Tran, Duc T., and Schroeder, J. A., “Rotorcraft Research at the NASA Vertical Motion Simulator,” NASA 

Ames Research Center, AHS Annual Forum, Montreal, Canada, April-May, 2008. 

 
3Aponso, B. L., Beard, S. D., and Schroeder, J. A., “The NASA Ames Vertical Motion Simulator – A Facility Engineered for 

Realism”, NASA Ames Research Center, Royal Aeronautical Society Spring 2009 Flight Simulation Conference, London, UK. 

 
4Magyar, T. J., Page, A. B., “Integration of the CASTLE Simulation Executive with Simulink,” Naval Air Systems 

Command, Patuxent River. MD, AIAA May 2001. 

 
5Christhilf, D.M, and Bacon, B. J., “Simulink-Based Simulation Architecture for Evaluating controls for Aerospace 

Vehicles,” NASA Langley, AIAA. 

 
6Hogg, E.F., “B-737 Linear Autoland Simulink Model”, NASA/CR-2004-213021. 

 
7Allen, M. J., Beyer, E.W., Hales, S.A., and Ilvedson, C. R., “Leveraging MathWorks Tools to Develop a Simulation 

Framework for Diverse Customers,” AIAA Modeling and Simulation Technologies Conference, August 2011, Portland,Oregon. 

 

 8Landers, S., “Real-time Pilot-in-the-Loop and hardware-in-the-Loop Simulation at Gulfstream”, ADI Users Society, San 

Diego, California, December, 2007. 

 
9Quaranta, G., Mantegazza, P., “Using MATLAB-Simulink RTW to Build Real Time Control Applications in User Space 

with RTAI-LXRT”, Dipartimeno di Ingeegneria Aerospaziale, Politecnico di Milano, Milano, Italy 

 
10Moelands, J. M., et al, “Automatic Model Transfer from MATLAB/Simulink to Simulation Model Portability 2”, NLR-TP-

2006-674, National Aerospace Laboratory NLR,SESP, Noordwiijk, November 2006.  

 
11Bodeman, C. D. and DeRose, F., “The Successful Development Process with MATLAB Simulink in the Framework of 

ESA‟s ATV Project”, IAC-04-U.3.b.03, Vega IT GmbH, Darmstadt, Germany. 

 
12Schroeder, J. A., “Helicopter Flight Simulation Motion Platform Requirements,” NASA Ames Research Center, NASA/TP-

1999-208766, Moffett Field, California, AIAA, July 1999, p 69.  

 
13Schroeder, J. A. and Grant, P. R., “Pilot Behavioral Observations in Motion Flight Simulation,” Federal Aviation 

Administration, Moffett Field, CA, 94035, and University of Toronto, Toronto, Ontario, Canada, M3H 5T6, AIAA Modeling and 

Simulation Technologies Conference, 2-5 August 2010, Toronto, Ontario, Canada. 
 
14 MicroTau Users Guide, Contract No. NAS 2-98084, NASA Ames Research Center, Moffett Field, California, 9403.5 

 
15Hardy, G. “Programmable Portable Guidance Display Users Manual”, NASA/TM-2012-215983, 2012, proposed. 

 
16Lawrence, B., Malpica, C.A. and Theodore, C. R., “The Development of a Large Civil TiltRotor Simulation for Hover and 

Low-Speed Handling Qualities Investigations,“ NASA Ames Research Center, Moffett Field, California, European Rotorcraft 

Forum, Paris, France, September, 2010. 

 
17The MathWorks Training Services, “Real-Time Workshop Fundamentals” The MathWorks, Inc., 2009. 

 
18”Real-Time Workshop Users Guide”, The MathWorks, Inc., Natick, MA 01760-2098, 2011 

 
19McBroom, M., Erkkinen, T., and Behr, M., “Integrating Simulink with other Simulation Environments,” AIAA-2010-7776. 

 
20Murri, D. G., and Jackson, E. B., “Flight Simulation Model Exchange,” NASA TM-2011-217085/Volume I, NESC-RP-09-

00598, Apr. 2011. 

 



 

American Institute of Aeronautics and Astronautics 
 

 

16 

21Nguyen, L. T., Ogburn, M. E., et. Al., “Simulator Study of Stall/Post-Stall Characteristics of a Fighter Airplane With 

Relaxed Longitudinal Static Stability,” NASA Technical Paper 1538, Dec. 1979. 

 
22Russell, R. S., “Non-linear F-16 Simulation using Simulink and Matlab,” Technical Report, University of Minnesota, June 

2003. 

 
23Sweet, B. T., Giovannetti, D. P., “Design of an Eye Limiting Resolution Visual System Using Commercial-Off-the-Shelf 

Equipment,” AIAA-2008-6847. 

 
 

 

 


