NASA

National Aeronautics and Space Administration

Vehicle Integrated Propulsion Research for the study of Health Management Capabilities

John Lekki, Don Simon, Gary Hunter, Mark Woike, Roger Tokars

Vehicle Integrated Propulsion Research (VIPR) Overview

EHM technology testing is challenging:

- Expensive
- Dedicated testing is necessary to demonstrate technology against known system "ground truth" state.

Partnerships make it possible:

- · Sharing of costs, results and benefits
- VIPR partners include NASA, Air Force, Pratt & Whitney and a growing list of other government agencies and industry partners.

VIPR test approach:

- A series of on-wing engine ground tests
- Includes "nominal" and "faulted" engine operating scenarios
- Technologies under evaluation include advanced EHM sensors and algorithms

VIPR Test Schedule

Testing is a necessary and challenging component of Engine Health Management (EHM) technology development.

NASA

VIPR I Test Overview

- VIPR I test was conducted in December 2011 at NASA Dryden / Edwards Air Force Base
- Test vehicle:
 - Boeing C-17 Globemaster III
 - Equipped with Pratt & Whitney F117 turbofan engines
- VIPR 1 EHM ground tests included:
 - A series of nominal and faulted engine test cases
 - Data collected over a range of power settings including quasi-steady-state and transient operating conditions

Boeing C-17 Globemaster III

Pratt & Whitney F117 Turbofan Engine

VIPR I – EHM Technologies Under Test

Multiple EHM sensors/algorithms tested during VIPR I Valuable for identifying real-world implementation issues/concerns Testing of multiple technologies also allows assessment of information fusion benefits NASA Aviation Safety Program

Relevance to Aviation Safety Needs

5

- Engine malfunction coupled with Inappropriate Crew Response is the most statistically significant issue
- Systems Analysis
 - Sensor failure is one of the largest contributors to In Flight Shut Down
 - Blade loss is one of the larger contributors to In flight Shut Down due to high vibration and power loss

Figure 3-5. Engine Component Rates for Restrict Thrust Response Category (Continued)

NASA Aviation Safety Program

Steve Clark, Grace Balut Ostrom, and Sam Clark, Engine Damage-Related Propulsion System Malfunctions, DOT/FAA/AR-08/24, December 2008.

Microwave Tip Clearance Sensor Technology

- Microwave blade tip clearance sensor technology for use in turbine engines
 - Structural health monitoring tip clearance and tip timing
 - Active closed loop clearance control tip clearance

Microwave sensors installed on the NASA Turbofan Test Rig at the GRC's 9x15 LSWT

- Targeted for use in hot sections of turbine engines (High Pressure Turbine section)
 - Rated for use in high temperature environment, $\sim 1200 \text{ }^{\circ}\text{C}$
 - Highly accurate, current goal of ~25um for this technology
 - Able to see through contaminants that exist in the engine flow
- Sensors have been used on several experiments at GRC to evaluate & demonstrate their performance. Goal is to use sensors on an actual aero engine.

Clearance data acquired on the NASA Turbofan Test Rig

NASA Aviation Safety Program

Self Diagnostic Accelerometer (SDA)

It is critical that sensor measurements be validated before a health management system may take such action

direction of

increasing temperature

Sensor validation is often accomplished through multiple sensors voting - MAS 777-200 flight in 2005 is a case where 2 failed sensors outvoted a third healthy sensor

Self Diagnostic Accelerometer (SDA) System

Diagnostic

Generator

This Self Diagnostic Accelerometer System was successfully demonstrated in providing electro-mechanical data including the health of the sensor-part attachment under varying temperature, torgue-attachment, and electro-mechanical noise.

High Temperature Electronic Nose MEMS Based Emission Sensors

- Multispecies microsensor detection in single package to allow miniaturization of the detection apparatus
- Quantify composition of critical constituents in turbine engine exhaust products, E.G., CO, CO₂, NOX, O₂, HC (unburned Hydrocarbons) and H₂
- Improve accuracy in measuring exhaust products
- Engine Test Objectives:
 - Obtain correlated emissions data in conjunction with gas path diagnostics data so that the benefit for inclusion of emissions information in gas path diagnostics can be studied

Standard Multi-gas Analyzer

CO Sensor

SiC sor Hydrocarbon Sensor

CO2 Sensor

MEMS Emissions Sensors

NASA Aviation Safety Program

MICROFABRICATED SENSOR LOCATION

Engine Tests and Testing

Propulsion Gas Path Health Management

Technical Approach:

- Develop optimal sensor placement methodology for gas path diagnostics
- Enhanced adaptive modeling techniques for on-line engine performance deterioration trending and fault diagnostics
- Gas Path Diagnostics also enable the modelbased estimation of unmeasured parameters critical for IVHM

Engine Test Objectives:

- Obtain data containing simulated faults for testing of current and future diagnostic algorithms
- Obtain diagnostic data concurrently with tip clearance and emission sensor data so that initial studies for the inclusion of these sensors in a diagnostic model can be made

Engine

FADEC

Sensed Measurements • Pressures, temperatures, rotor speeds, etc.

Gas-Path Diagnostics

On-Board Adaptive Model

Model-Based Diagnostics Architecture

Performance Trending and Fault Diagnostics NASA Aviation Safety Program

C-17 Aircraft

Test Implementation

VIPR I testing of the Self Diagnostic Accelerometer

NASA

Roger Tokars (GRC) John Lekki (GRC)

December 2011

The Self Diagnostic Accelerometer (SDA) was mounted and tested on the C-17 engine in order to demonstrate the SDA's flight worthiness and robustness.

Conclusion

The Self Diagnostic Accelerometer System was successfully demonstrated in providing electro-mechanical data including the health of the sensor attachment under the extremes of an aircraft engine environment.

NASA Aviation Safety Program

Results

Pattern recognition software successfully discriminates all tight and loose conditions.

Preservation Oil Burn-off

- Day 1 of VIPR testing was a "green engine run" (first time the test engine was run post-overhaul)
- Provided an opportunity to evaluate the Emission Sensor System (ESS) during preservation oil burn-off

ESS Rig

Preservation oil burn-off!

Preservation Oil Burn-off Test

HC - PPM

Engine 3 Preservation Oil Burn Off

12/12/2011 - Engine 3 Preservation Oil Burn Off - 7205-31-100.002 12/12/2011 - Engine 3 Preservation Oil Burn Off - 7205-31-100.002 0, HC co₂, o₂ - % NOX - PPM NOx CO, 23:48:29 23:49:55 23:44:10 23:47:02 23:48:29 23:45:36 23:52:48 23:54:14 23:55:41 23:52:48 23:51:22 23:57:07 23:44:10 23:45:36 23:54:14 23:47:02 23:49:55 23:51:22 23:55:41 23:57:07 Visible smoke Engine stop visible smoke Engine start Engine stop Engine start Time (GMT) Time (GMT)

- Start up ESS observed fast rise in concentrations
 - Exception oxygen concentration dropped, as expected
- ~2 min from start up noticeable change and recovery
- The high levels eventually tapered down to somewhat lower concentrations with the engine stable at idle

VIPR I Highlights: Gas Path Diagnostic Testing

Gas Path Diagnostic Test Objectives:

- Collect engine performance data under nominal and faulty operating conditions
- Evaluate ability of adaptive model to track engine performance
- Evaluate ability of gas path diagnostic algorithms to detect fault conditions

Engine Gas Path Fault Conditions Included:

- Station 2.5 bleed failed full-open
- Station 2.5 bleed schedule biased +10% open
- Stage 14 bleed failed full-open

Next Steps:

- Continue post-test data analysis
- Improve model transient and low power accuracy

Event Test Sequence

F117 engine - bleed fault locations

Station 2.5 and Stage 14 bleed fault signatures NASA Aviation Safety Program

VIPR I Post-Test Data Analysis (Preliminary Results)

- Model-based performance estimation and diagnostics
 - Steady-state measurement residuals (faulty vs. nominal baseline) found to be in good agreement with model predictions for each fault type.
 - Model-based diagnostic architecture trained on a single baseline run and then used to analyze remaining runs. With training:
 - Model-engine residuals reduced on subsequent baseline runs.
 - Model-engine residuals exhibit increases on fault runs.
 - Future steps will be taken to:
 - Improve model accuracy at specific power settings and during engine transients.
 - Evaluate the effectiveness of different machine learning techniques applied to capture engine-model mismatch.

VIPR I Post-Test Data Analysis (Preliminary Results - continued)

- Emission Sensor System (ESS)
 - Baseline emission levels established.
 - Discernable change in emissions observed during preservation oil burn-off.
 - Demonstrated system under nominal and seeded fault conditions. The ESS system in general tracked a wide range of varying engine conditions.
- Microwave blade timing / tip clearance sensor
 - Successfully passed electro-magnetic interference (EMI) / electro-magnetic compatibility (EMC) checkout.
 - Cleared for actual on-engine use for future VIPR tests at DFRC.
- Self-diagnostic accelerometer (SDA)
 - Four SDAs, attached at engine B-flange and gearbox, successfully completed first-ever demonstration in engine environment.
 - SDA able to successfully detect un-torquing (loosening) of accelerometer connection.

Future Test Plans (VIPR 2 and VIPR 3)

- VIPR 2 Test Objectives (2013)
 - Advanced sensors
 - Gas path diagnostic technologies
 - Miss-scheduled turbine case cooling
 - Fan response research
- VIPR 3 Test Objectives (~2014)
 - Initial steps toward EHM sensor fusion with Advanced Sensors
 - Volcanic ash ingestion testing
 - Run engine to end of life