



### Verification, Validation and Credibility of the NASA Integrated Medical Model Sleep Disruption-Medical Intervention Forecasting Tool Exploration Medicine Capabilities Project Human Research Program

J.G. Myers<sup>1</sup>, J.E. Brooker<sup>1</sup>, B.E. Lewandowski<sup>1</sup>, S.R. Hursh<sup>3</sup>, M.M. Mallis<sup>3</sup>, J.L. Caldwell<sup>2</sup>, M.E.Walton<sup>4</sup>

 NASA Glenn Research Center, 21000 Brookpark Rd., Cleveland, OH 44135, jerry.g.myers@nasa.gov
Air Force Research Laboratory, Wright-Patterson AFB, OH 45433

3. Institutes for Behavior Resources, Inc., 2104 Maryland Avenue, Baltimore, MD 21218

4. Wyle Integrated Science and Engineering, Houston TX 77058



# Focus on the future, Informed with the past



- Questions for NASA Human Research Program
  - How do we best inform decision makers and mission planners on what is needed to allow humans to visit Moon, Mars, and other celestial bodies?
  - How do we optimize medical needs for astronauts with limited Mass, Volume and Power?







### Integrated Medical Model (IMM)



"The most important questions of life are indeed, for the most part, really only problems of probability." ~Pierre Simon Laplace

Treatment Options

Integrated Medical

Model

Mission of Success

**Clinical Evidence** 

Equipment and Supp

#### Potential Medical Condition





Likelihood of occurrence, probable severity of occurrence, and optimization of treatment and resources.



- Integrate best available evidence to quantify the probability and consequences of medical risks
- Identify medical resources and inform operational decisions which optimize health and mission success
- "Data hungry" process

www.nasa.gov



### Houston, we have a problem



- Forecasting rare medical events confounded by space travel
  - Insufficient data
    - Few or no occurrences
  - No clear correlation to terrestrial analog
  - Multiple influencing conditions
    - Mission details
    - Vehicle limitations (environment)
    - Physiological adaptations
    - Interaction of the contributing factors
- How do we verify and validate?
  - When we are data "starved"





### Its Really About Model Credibility! Achieving a high level of belief or trust in the model

- NASA-STD-7009
  - Standard for Models and Simulations (M&S)
- M&S Development
  - Verification
  - Validation
- M&S Operations
  - Input Pedigree
  - Results Uncertainty
  - Results Robustness
- Supporting Evidence
  - Use History
  - M&S Management
  - People Qualifications

People Qualifications M&S Management Use History Results Robustness

Verification



Human research program: a) Scoring subject to SME review b) Results used to balance project derived evidence





# Facts are Stubborn Things **Credibility Levels of Evidence**



| Le         | evel | Verification                                                   | Validation                                                                         | Input Pedigree                                                                   | Results<br>Uncertainty                             | Results<br>Robustness                                                                  | Use History                                                            | M&S<br>Management                    | People<br>Qualifications                                                                           |
|------------|------|----------------------------------------------------------------|------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------|--------------------------------------|----------------------------------------------------------------------------------------------------|
| at the men | 4    | Numerical<br>errors small<br>for all<br>important<br>features. | Results agree<br>with real-<br>world data.                                         | Input data agree<br>with real-world<br>data.                                     | Non-<br>deterministic<br>& numerical<br>analysis.  | Sensitivity<br>known for<br>most<br>parameters;<br>key<br>sensitivities<br>identified. | De facto<br>standard.                                                  | Continual<br>process<br>improvement. | Extensive<br>experience in<br>and use of<br>recommended<br>practices for this<br>particular M&S.   |
|            | 3    | Formal<br>numerical<br>error<br>estimation.                    | Results agree<br>with<br>experimental<br>data for<br>problems of<br>interest.      | Input data agree<br>with<br>experimental<br>data for<br>problems of<br>interest. | Non-<br>deterministic<br>analysis.                 | Sensitivity<br>known for<br>many<br>parameters.                                        | Previous<br>predictions<br>were later<br>validated by<br>mission data. | Predictable<br>process.              | Advanced<br>degree or<br>extensive M&S<br>experience, and<br>recommended<br>practice<br>knowledge. |
|            | 2    | Unit and<br>regression<br>testing of<br>key features.          | Results agree<br>with<br>experimental<br>data or other<br>M&S on unit<br>problems. | Input data<br>traceable to<br>formal<br>documentation.                           | Deterministic<br>analysis or<br>expert<br>opinion. | Sensitivity<br>known for a<br>few<br>parameters.                                       | Used before<br>for critical<br>decisions.                              | Established<br>process.              | Formal M&S<br>training and<br>experience, and<br>recommended<br>practice training.                 |
|            | 1    | Conceptual<br>and<br>mathematical<br>models<br>verified.       | Conceptual<br>and<br>mathematical<br>models agree<br>with simple<br>referents.     | Input data<br>traceable to<br>informal<br>documentation.                         | Qualitative<br>estimates.                          | Qualitative<br>estimates.                                                              | Passes<br>simple tests.                                                | Managed<br>process.                  | Engineering or<br>science degree.                                                                  |
|            | 0    | Insufficient<br>evidence.                                      | Insufficient<br>evidence.                                                          | Insufficient<br>evidence.                                                        | Insufficient<br>evidence.                          | Insufficient<br>evidence.                                                              | Insufficient<br>evidence.                                              | Insufficient<br>evidence.            | Insufficient<br>evidence.                                                                          |
|            |      | M&S Development                                                |                                                                                    | M&S Operations                                                                   |                                                    |                                                                                        | Supporting Evidence                                                    |                                      |                                                                                                    |

www.nasa.gov 6



### Sleep Disruption- Medical Intervention Forecasting (SDMIF) Tool

NASA

- Predict the sleep inducing medication use during a space mission
  - Resulting from circadian rhythm disruption, insomnia, and environmental disruptions







## **SDMIF: Verification and Validation**

- Limited space flight data most likely used in the development of the model
- Verification exercises
  - Fixed and Extreme value testing of all PDFs
  - Estimates of numerical error
- Validation of individual components
  - Validate conceptual structure by SME review
    - Schedulers verify mission schedule component
    - Medical Ops validate the diagnosis component
- Validation of Module Performance
  - Face validation as V&V tool
    - Turing or Schruben tests with operational and flight medical experts
  - Direct comparison to observed incidence
    - Historical testing Select data used for validation
    - Prospective validation Future missions observations







# Model Data, Robustness and Uncertainty



- Model Data
  - Desired: Assure data are appropriate for the intended model use
  - Achieved: Highest quality of the data correlated to the scenario
- Model Robustness
  - Desired: percentage of the contribution of an independent variable to the variation of the outcome
  - Achieved : Rank order correlation sensitivity analysis
- Model Uncertainty
  - Desired: magnitude and confidence of estimate
  - Achieved: quantified based on nondeterministic analysis





# Use History, Management and Qualifications



- Use History
  - Desired: Model use extended to address similar questions
  - Achieved:
    - Similar outputs to other tools in limited scenarios
    - When Model is used to inform real world decisions
- Management: Continuous Improvement
  - Desired and Achieved: Document all activity, management processes and decisions affecting code development, input changes, and V&V efforts.
- Qualifications
  - Desired: Staff can interpret and use the results
  - Achieved: Development staff maintains expertise levels required to develop, maintain, update and operate the model environment.





# Implementation in Global IMM



- Undergo subject matter review
  - SDMIF Conceptual model, Input data, validation process reviewed by National Space Biomedical Research Institute
- Undergo integration team review
  - IMM team review of module performance and evidence
    - Credibility MUST be at least that of the rest of the IMM
- New IMM model undergoes V&V and credibility assessment
- All evidence meticulously documented
  - "We can lick gravity, but sometimes the paperwork is overwhelming." ~Wernher von Braun



11









- Models related to medical events used to inform Space Flight Operations and Planning
  - Must exhibit a high level of Credibility for the intended use
  - Must have their Credibility assessed over multiple factors
- Chief factor is an acceptable V&V process
  - Complicated by limited in-flight data
  - Relies on systematic use of SME's and Face Validation to balance limits in direct comparative evidence



### Acknowledgements





- The IMM and SDMIF is funded by the NASA Human Research Program, which is managed at the Johnson Space Center.
- Special Thanks
  - IMM development team at Wyle ISGE
    - Many are probably in the audience Thanks Guys!
  - David Baumann (JSC) and DeVon Griffin (GRC)
    - NASA ExMC Project Managers
  - Lauren Leveton BHP Lead NASA-JSC
  - Daniel Mollicone Pulsar Informatics Inc. (SME Review)
  - Laura Barger NSBRI (SME Review)
  - Gary Beven JSC medical Operations (SME Review)
  - Host of other players