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I. Introduction

The asymptotic behavior of adaptive systems has been a well researched topic during the last

couple of decades, and it is well known that asymptotic tracking can be achieved using the Lyapunov

redesign method. However, the transient behavior of the input and output signals can be very

oscillatory with significant excursions [1]. There has been a great deal of effort to modify the

control architecture and the adaptive laws from the perspective of improving the transient behavior

of the tracking error. The majority of these efforts led to nonadaptive high gain feedback [2, 3],

switching control law [4] or to a parameter dependent persistent excitation condition [5].

On the other hand, the tracking error magnitude can be decreased by increasing the adaptation

rate, but this results in unwanted high frequency oscillations and large overshoot in the control signal.

This shortcoming is common for the majority of existing adaptive control methods. Recently some

results have been appearing in the control community, which explicitly address the input signal

transient behavior (see for example [6]).

In this note, instead of modification of the control architecture or the adaptive laws, the reference

model is modified by feeding back the tracking error signal. This approach, called here "modified-

reference-model MRAC" or M-MRAC in short, is motivated by the fact that the initial large errors in
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the control gains generates large transient excursions both in the system’s input and output signals.

The idea is to prevent the system’s attempt to aggressively maneuver toward the reference model

by modifying the reference model by a term proportional to the tracking error. As the tracking

error approaches zero, the reference model approaches its original form. Therefore, the system

asymptotically tracks not only the modified reference model, but also the original one. In addition,

the error feedback term determines the damping in the control signal, which in concert with the

adaptation rate makes it possible to regulate the transient of the control signal. A design guideline

is provided for the selection of the feedback gain relative to the adaptation rate. The proposed

adaptive control method has uniform performance in reference commands and initial conditions

without the need for re-tuning.

It is worth to note that the reference model modification is not new. It was used to accommodate

for the input saturation in the adaptive system (see for example [7, 8] and references therein).

II. Reference model modification

Consider a multi-input multi-output uncertain linear system

ẋ(t) = Ax(t) +Bu(t), x(0) = x0 , (1)

where x ∈ R
n and u ∈ R

q are the state and input of the system respectively, and A ∈ R
n×n and

B ∈ R
n×q are unknown constant matrices satisfying the following matching conditions.

Assumption II.1 Given a Hurwitz matrix Am ∈ R
n×n and a matrix Bm ∈ R

n×q of full column

rank, there exists a matrix K1 ∈ R
n×q and a sign definite matrix Λ ∈ R

q×q such that the following

equations hold

B = BmΛ, A = Am −BK⊤

1 .

Remark II.1 The sign definiteness of Λ corresponds to the conventional condition on the high

frequency gain matrix of MIMO systems (see for example [9]). Without loss of generality it is

assumed that Λ is positive definite. The matching equations (2) complete the conditions for the

existence of an adaptive controller.
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As in the conventional model reference adaptive control (MRAC) framework, the objective is

to design a control signal u(t) such that the the system (1) tracks a given reference model

ẋr(t) = Amxr(t) +Bmr(t), xr(0) = x0 ,

where Am, Bm are chosen according to performance specifications and satisfy Assumption II.1 and

r(t) is a bounded and piecewise uniformly continuous external command. It can be noticed that

discontinuous commands such as steps or square waves satisfy these conditions.

The system (1) can be written in the form

ẋ(t) = Amx(t) +Bmr(t) +BmΛ[u(t)−Θ⊤f(t)] , (2)

where Θ⊤ = [K⊤
1 Λ−⊤], f(t) = [x⊤(t) r⊤(t)]⊤. Ideally, if Θ were known, one could set the control

signal equal to

u0(t) = Θ⊤f (t) , (3)

thus reducing the system’s dynamics to the given reference model (2). Although the reference model

(2) can always be specified from the performance perspectives, the control signal (3), which here is

called a reference control signal, can not be implemented. Therefore, the adaptive version of it is

implemented in the MRAC framework, that is

u(t) = Θ̂⊤(t)f (t) , (4)

where Θ̂(t) is the estimate of the ideal control gain Θ, and is updated online according to the

adaptive law

˙̂
Θ(t) = −γf(t)e⊤(t)PBm, Θ̂(0) = Θ0 , (5)

where γ > 0 is the adaptation rate, e(t) = x(t) − xr(t) is the tracking error, and P = P⊤ > 0 is

the solution of the Lyapunov equation

A⊤

mP + PAm = −Q (6)

for some Q = Q⊤ > 0. Introducing the parameter estimation error as Θ̃(t) = Θ̂(t)−Θ, the tracking

error dynamics can be written in the form

ė(t) = Ame(t) +BmΛΘ̃⊤(t)f (t) . (7)
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It is well known that this control architecture guarantees asymptotic tracking x(t) → x
0(t) as

t → ∞, while ensuring the boundedness of all closed-loop signals. However, the transient behavior

of x(t) and u(t) cannot be guaranteed, because high frequency oscillations are generated in the

control signal, when the adaptation rate is increased in order to obtain better tracking in transient.

The proposed M-MRAC architecture employs a modified reference model in the form

ẋm(t) = Amxm(t) +BmNr(t) + λem(t), xm(0) = x0 , (8)

where λ > 0 is a design parameter and em(t) = x(t)−xm(t) is the modified tracking error, and the

subscript m is introduced to distinguish between the original reference model (2) and the modified

reference model (8), which is used for the actual control design. The original reference model and

the reference control signal will be used only for the analysis. The modified tracking error satisfies

the dynamic equation

ėm(t) = (Am − λIn)em(t) +BmΛ[u(t)−Θ⊤f (t)] , (9)

where In denotes n-dimensional identity matrix. The adaptive control u(t) is defined according to

equation (4) as in MRAC design, but the adaptive law now is based on the modified tracking error

em(t)

˙̂
Θ(t) = −γf(t)e⊤

m(t)PBm, Θ̂(0) = Θ0 . (10)

With the application of the adaptive control u(t) the modified tracking error dynamics reduce to

ėm(t) = (Am − λIn)em(t) +BmΛΘ̃⊤(t)f (t) , (11)

where the parameter estimation error Θ̃(t) is defined similar to MRAC.

In the following analysis, the control error signal is needed, which is defined as ũ(t) = u(t) −

u0(t). From the above constructions it follows that

ũ(t) = Θ̃⊤(t)f (t) . (12)

Since the reference control signal is the best achievable signal, it is in our interest to minimize the

control error ũ(t), as well as the state errors e(t) and em(t), both in transient and steady state

by selecting proper values for the adaptation rate γ and feedback parameter λ. This is the main

objective of the analysis in the following sections.
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Remark II.2 It is worth to point out that the modified reference model is used for the control design

purposes. The asymptotic and thransient analysis of the adaptive system is conducted with respect

to the original reference model, which implies that the desired dynamic characteristics built in the

specified reference model are preserved with the proposed control method.

III. Analysis of M-MRAC Design

A. Asymptotic properties

The following theorem summarizes the asymptotic properties of the proposed M-MRAC archi-

tecture.

Theorem III.1 Let the system (1) satisfy Assumption II.1, and the reference model be given by

(2). Let the system be controlled by the M-MRAC scheme given by (4), (8) and (10). Then

1) all closed-loop signals are bounded

2) em(t) → 0, e(t) → 0 and ũ(t) → 0 as t → ∞.

The theorem can be proved using the standard Lyapunov tools and the extended Barabalat’s

lemma from [10].

Theorem III.1 shows that M-MRAC architecture guarantees asymptotic tracking of not only

the modified reference model (8), but also the original reference model of the conventional MRAC

architecture (2). That is the asymptotic performances of both conventional MRAC and proposed

M-MRAC designs are equivalent.

B. State transient properties

Using the Lyapunov analysis it can be shown

‖em(t)‖L∞
≤ σ

√

λmin(P )

1√
γ
, (13)

where σ =

√

trace
(

ΛΘ̃⊤(0)Θ̃(0)
)

and

‖em(t)‖L2
≤ σ

√

λmin(Q) + 2λλmin(P )

1√
γ
. (14)

The bounds on the tracking error signal e(t) are obtained using the equation

d

dt
[e(t)− em(t)] = Am[e(t)− em(t)] + λem(t) (15)
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and setting λ = c0
√
γ, where c0 > 0 is selected form the control error perspective in the next

subsection. These bounds have form

‖e(t)‖L∞

σ
√

λmin(P )

(

kmc0 +
1√
γ

)

‖e(t)‖L2
≤ σ

√

λmin(Q) + 2λλmin(P )

(

kmc0 +
1√
γ

)

, (16)

where km is the L1 norm of the state transition matrix eAmt. It follows from the above inequalities

that the oscillations (L2 norm) in the error e(t) are reduced by simultaneously increasing λ and

γ. The overshoot (L∞ norm) is regulated by the choice of γ and matrix P (or Q in the Lyapunov

equation (6)).

Remark III.1 The derived bounds still hold, when the reference model cannot be initialized at the

system’s initial conditions. The difference is an additional term in σ, which is now given by the

equation

σ =

√

em⊤(0)Pem(0) + trace
(

ΛΘ̃⊤(0)Θ̃(0)
)

.

C. Input transient properties

It can be noticed that ũ(t) does not explicitly depend on design parameters λ and γ. Instead,

˙̃u(t) depend on γ through the adaptive laws, and ¨̃u(t) depend on λ through the tracking error

dynamics. Therefore we conduct dynamic analysis of this signal. It satisfies the differential equation

¨̃u(t) + λ ˙̃u(t) + γρ(t)Gũ(t) = γη(t)B⊤

mPem(t) + (s+ λ)h(t) , (17)

where ρ(t) = f⊤(t)f (t), G = B⊤
mPBmΛ, η(t) = −ρ(t)B⊤

mPAmem(t) − ρ̇(t)B⊤
mPem(t) and h(t) =

Θ̃⊤(t)ḟ(t). Since all closed-loop signals are bounded, it follows that ‖ρ(t)‖L∞
≤ α1, ‖ρ̇(t)‖L∞

≤ α2

and ‖h(t)‖L∞
≤ α3 for some positive α1, α2 and α3. Therefore, the equation (17) can be considered

as a second order linear equation with time varying coefficients in ũ(t). It can be inferred from the

equation (17) that the adaptation rate γ determines the frequency of ũ(t) and hence the frequency

of the control signal u(t), since the reference control u0(t) is in the low frequency range. Therefore,

increasing γ increases the oscillations in u(t) as it is the case for the conventional MRAC design. On

the other hand, λ determines the damping ratio. Therefore increasing λ suppresses the oscillations

in ũ(t) and hence in the control signal u(t).
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A proper value for the parameter λ is selected from the perspective of minimizing the

norm bound on ũ(t). Following the steps from [11], it can be shown that selection of λ =

√

2α1γλmax(B⊤
mPBm) results in the bound

‖ũ(t)‖ ≤ β3e
−νt + β4γ

−
1

6 , (18)

where the positive constants β3 and β4 do not depend on γ and ν is proportional to
√
γ.

Using the inequality (18), a tighter bound can be obtained for tracking error form the error

dynamics (7). This bound has a form of

‖em(t)‖ ≤ β5e
−ν∗t + β6γ

−
2

3 , (19)

where ν∗ = min[ν, νm] and νm is the rate of decay of eAmt.

It follows from the inequalities (18) and (??) that the input and output transient errors can be

decreased as desired by increasing the adaptation rate.

IV. Application to a Generic Transport Model

In this section, the advantages of the M-MRAC architecture are demonstrated in simulations for

a dynamic model that represents the lateral-directional motion of a generic transport aircraft (GTM)

[12]. The nominal model is the linearized lateral-directional dynamics of GTM at the altitude of

9144 m and speed of 0.8M and is given by the equation

ẋ(t) = Anx(t) +Bnu(t) , (20)

where x = [β r p φ]⊤ is the lateral-directional state vector, in which β is the sideslip angle, r

is the yaw rate, p is the roll rate, φ is the bank angle, and u = [δa δr]
⊤ is the control signal that

includes the aileron deflection δa and the rudder deflection δr. The controlled output is selected to

be the sideslip angle and the bank angle of GTM. The open loop system has a slow Roll mode and

negligible damping in the Dutch-Roll mode (see Table 1 for details).

The reference model is selected from the perspective of improving the performance character-

istics of the nominal dynamics and is given by the matrices Am = An − BnK0 and Bm = BnN ,

where the feedback and feedforward matrices are selected to speeds up the Roll mode and increases

the damping ratio of the Dutch-Roll mode.
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Table 1 Dynamics characteristics of the nominal model.

Open-loop Eigenvalues -0.0177, -1.6339, −0.3212 ± 1.7404i

Closed-loop Eigenvalues -1.1623, -3.5583, −1.2106 ± 1.2008i

The uncertain model of GTM corresponds to about 28% loss of left wing tip and 55% loss of

rudder surface. The control objective is to track a reference command r(t) = [βcom(t) φcom(t)]⊤

form the zero initial conditions. The reference command is chosen to be a series of coordinated turn

maneuvers. That is, βcom(t) = 0 and the bank angle command is chosen to be a square wave of the

amplitude of 15 degrees and of the frequency π
10 rad/sec. In order to make φcom(t) differentiable, it

is filtered through a first order stable filter 10
s+10 . For each γ, parameter λ is selected with α1 = π2

122 .

First, a simulation is run with γ = 100 and Q = I4. Figure 1 displays the output tracking

of the adaptive system with M-MRAC and MRAC versus the output of the original reference

model. Clearly M-MRAC has a superior performance even for the chosen low adaptation rate. The

corresponding adaptive control signals and the reference control signals are displayed in Figure 2.

It can be observed that the M-MRAC control signals tracks the reference control signal quite well

without any oscillations unlike the MRAC control signal.
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Fig. 1 Output performance of the proposed M-MRAC with γ = 100.

Second, it is demonstrated that both the output and input tracking errors can be decreased by

increasing γ, without generating the oscillations in the control signal. For this purpose, simulations

are run with γ = 40000 and γ = 200000. The results are presented in Table 2. As it can be seen
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Fig. 2 Input performance of the proposed M-MRAC with γ = 100.

from the table, the control errors are systematically decreased when γ is increased in the case of

M-MRAC design. In the MRAC design case these errors are large for large values of γ. The tracking

errors are decreased when γ is increased for both designs. In general, the tracking error may be

smaller in the case of MRAC, since the term kmc0σ√
λmin(P )

on the right hand side of the first inequality

in (16) is absent in the case of MRAC design (c0=0).

Table 2 Output and input tracking error norms in degrees

γ Design ‖eβ(t)‖L∞

‖eφ(t)‖L∞

∥

∥

∥
δ̃a(t)

∥

∥

∥

L∞

∥

∥

∥
δ̃r(t)

∥

∥

∥

L∞

400
MRAC 0.2826 0.7513 15.0577 23.0739

M-MRAC 0.0255 1.3035 11.7093 0.6349

40000
MRAC 0.0056 0.0172 27.2261 47.1725

M-MRAC 0.0036 0.1958 4.6656 0.2307

200000
MRAC 0.0025 0.0051 27.3205 47.1719

M-MRAC 0.0016 0.1162 3.7371 0.1922

Next, to demonstrate the scaling properties of M-MRAC, a simulation is run with 2-times scaled

φcom(t). In this case, the output performance does not change, as can be seen from Figure 3, and

the input is scaled 2-times as in the case of a linear time invariant system.

The final simulation is run with nonzero initial conditions to show that M-MRAC does not

degrade with the change of initial conditions, unlike conventional MRAC. The output and input

performance of M-MRAC with γ = 200000 and x0 = [0.2 0.5 − 3.0 10]⊤ π
180 is displayed in Figures
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Fig. 3 Output performance of the proposed M-MRAC for scaled command.
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Fig. 4 Input performance of the proposed M-MRAC for scaled command.

5 and 6.

It can be observed that a good tracking of the output and input signals is achieved both in

transient and in steady state.

V. Conclusions

A simple yet powerful modification of the conventional MRAC design is presented, which has

a guaranteed transient and asymptotic performances in both the input and output signals of the

system. The proposed M-MRAC design enables one to achieve close tracking of reference output

and input signals by increasing the adaptation rate without generating high frequency oscillations

in the control signal. The performance of M-MRAC is uniform in initial conditions and in reference
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Fig. 5 Output performance of the proposed M-MRAC for nonzero initial conditions.
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Fig. 6 Input performance of the proposed M-MRAC for nonzero initial conditions.

command.

Since only the reference model is modified leaving the adaptive laws intact, this method can

be applied along with any known adaptive laws, such as dead-zone modification, e-modification,

σ-modification, etc.
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