

Project Icarus

Efficient Solar Escape Trajectories for Interstellar Travel

R. Adams

Two Burn Escape Maneuver

- Discussed in "Ways to Spaceflight", Oberth, 1928
- First burn slows spacecraft, causing it to drop towards central body
- Second burn accelerates spacecraft.
- Loss from first burn overcome by additional energy extracted during second burn

Criteria for using Oberth Maneuver

- Derivation produces two roots
- Oberth did not give criteria for using maneuver
- Levin, others found first root in format similar to below

$$\Delta V_1 + \Delta V_3 = \sqrt{\frac{\mu}{r_0}}$$

 Second real root indicates point at which Oberth maneuver is no longer more effective than direct option

$$\left(\Delta V_1 + \Delta V_3\right)\frac{\mu}{r_0} + \Delta V_1\left(\Delta V_3 - \Delta V_1\right)\sqrt{\frac{\mu}{r_0}} - \Delta V_1^2 \Delta V_3 = 0$$

 Are DV's necessary for interstellar exploration inside the range where Oberth is most effective?

Oberth Two Burn vs. Direct Escape

 Oberth maneuver shows great improvement over direct option in achieving escape

Relevant Propulsion Concepts

Concept		I _{sp}	α	T/W _{eng}
		(sec)	(kW/kg)	(kN/kN)
Nuclear Pulse ¹		5,000	1250	5
<u>Fusion – Inertial</u> <u>Confinement</u>				
	IEC ²	50,000	1200	0.5
	ICF ³	13,000	10	0.02
<u>Fusion – Magnetic</u> <u>Confinement</u>				
	Spherical Torus ³	35,000	10	0.006
	Gas Dynamic Mirror ³	110,000	4	0.0007
Pulsed FRC ³		100,000	15	0.003
Magnetized Target Fusion ³		77000	100	0.04

¹Bonometti, Joseph, personal communication.

²Bussard, Robert W. and Jameson, Lorin, W., "From SSTO to Saturn's Moons: Superperformance Fusion Propulsion for Practical Spaceflight", in *Fusion Energy in Space Propulsion*, edited by Terry Kammash, AIAA, Washington DC, 1995.

³Polsgrove, Tara, and Adams, Robert B., "Trajectories for High Specific Impulse High Specific Power Deep Space Exploration", AIAA 2002-4433, 2002.

⁴Kammash, Terry, "Principles of Fusion Energy Utilization in Space Propulsion", in *Fusion Energy in Space Propulsion*, edited by Terry Kammash, AIAA, Washington DC, 1995.

Achieved Escape Velocity (0.025-1 g acc.)

Achieved Escape Velocity (2.5-100 g acc.)

Earth Escape

Solar Escape

Specific Impulse and Specific Power

- Jet power defined as
- Thrust defined as
 - Pressure term is small contributor for a well designed nozzle
- Instantaneous specific impulse is
- Combining above yields
- Dividing by propulsion system mass yields
 - Defines specific power as function of Isp and thrustto-weight

$$P_{jet} = \frac{1}{2}\dot{m}V_e^2$$
$$F = \dot{m}V_e + (p_e - p_a)A_e$$

$$I_{sp} = \frac{F}{\dot{m}g_0}$$

$$P_{jet} = \frac{1}{2} g_o I_{sp} F$$

$$\alpha = \frac{P_{jet}}{m_{eng}} = \frac{1}{2} g_o^2 I_{sp} \frac{F}{g_0 m_{eng}}$$

PJMIF Performance

PJMIF Performance vs. Ideal

PJMIF Performance vs. Nuclear Pulse

Propulsion Technologies

Parametric Trajectory Analysis

Specific Impulse, I_{sp}

Missions vs. Propulsion Technologies

Propulsion Research Effort

- Each propulsion category can be expanded into individual propulsion concepts
- Nuclear Thermal is expanded here
- Individual concepts are mapped inside bubble with dependancies shown by arrow

Conclusions

- Oberth two-burn maneuver is little known but worthwhile for solar escape applications
- Producing total DV using Oberth maneuver is infeasible
- Accelerations achievable by planned propulsion systems will benefit from Oberth maneuver

- NASA MSFC for supporting my efforts with Project Icarus
- G. Richardson for co-authoring previous work in exploring the Oberth maneuver